Statistiques
| Révision :

root / ETSN / MySteps_5.py @ 278

Historique | Voir | Annoter | Télécharger (8,37 ko)

1 269 equemene
#!/usr/bin/env python3
2 269 equemene
3 269 equemene
import numpy as np
4 269 equemene
import pyopencl as cl
5 269 equemene
6 269 equemene
# piling 16 arithmetical functions
7 269 equemene
def MySillyFunction(x):
8 269 equemene
    return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2))
9 269 equemene
10 269 equemene
# Native Operation under Numpy (for prototyping & tests
11 269 equemene
def NativeAddition(a_np,b_np):
12 269 equemene
    return(a_np+b_np)
13 269 equemene
14 269 equemene
# Native Operation with MySillyFunction under Numpy (for prototyping & tests
15 269 equemene
def NativeSillyAddition(a_np,b_np):
16 269 equemene
    return(MySillyFunction(a_np)+MySillyFunction(b_np))
17 269 equemene
18 269 equemene
# CUDA complete operation
19 269 equemene
def CUDAAddition(a_np,b_np):
20 269 equemene
    import pycuda.autoinit
21 269 equemene
    import pycuda.driver as drv
22 269 equemene
    import numpy
23 269 equemene
24 269 equemene
    from pycuda.compiler import SourceModule
25 269 equemene
    mod = SourceModule("""
26 269 equemene
    __global__ void sum(float *dest, float *a, float *b)
27 269 equemene
{
28 269 equemene
  // const int i = threadIdx.x;
29 269 equemene
  const int i = blockIdx.x;
30 269 equemene
  dest[i] = a[i] + b[i];
31 269 equemene
}
32 269 equemene
""")
33 269 equemene
34 269 equemene
    # sum = mod.get_function("sum")
35 269 equemene
    sum = mod.get_function("sum")
36 269 equemene
37 269 equemene
    res_np = numpy.zeros_like(a_np)
38 269 equemene
    sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
39 269 equemene
        block=(1,1,1), grid=(a_np.size,1))
40 269 equemene
    return(res_np)
41 269 equemene
42 269 equemene
# CUDA Silly complete operation
43 269 equemene
def CUDASillyAddition(a_np,b_np):
44 269 equemene
    import pycuda.autoinit
45 269 equemene
    import pycuda.driver as drv
46 269 equemene
    import numpy
47 269 equemene
48 269 equemene
    from pycuda.compiler import SourceModule
49 269 equemene
    TimeIn=time.time()
50 269 equemene
    mod = SourceModule("""
51 269 equemene
__device__ float MySillyFunction(float x)
52 269 equemene
{
53 269 equemene
    return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
54 269 equemene
}
55 269 equemene

56 269 equemene
__global__ void sillysum(float *dest, float *a, float *b)
57 269 equemene
{
58 269 equemene
  const int i = blockIdx.x;
59 269 equemene
  dest[i] = MySillyFunction(a[i]) + MySillyFunction(b[i]);
60 269 equemene
}
61 269 equemene
""")
62 269 equemene
    Elapsed=time.time()-TimeIn
63 269 equemene
    print("Definition of kernel : %.3f" % Elapsed)
64 269 equemene
65 269 equemene
    TimeIn=time.time()
66 269 equemene
    # sum = mod.get_function("sum")
67 269 equemene
    sillysum = mod.get_function("sillysum")
68 269 equemene
    Elapsed=time.time()-TimeIn
69 269 equemene
    print("Synthesis of kernel : %.3f" % Elapsed)
70 269 equemene
71 269 equemene
    TimeIn=time.time()
72 269 equemene
    res_np = numpy.zeros_like(a_np)
73 269 equemene
    Elapsed=time.time()-TimeIn
74 269 equemene
    print("Allocation on Host for results : %.3f" % Elapsed)
75 269 equemene
76 269 equemene
    TimeIn=time.time()
77 269 equemene
    sillysum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
78 269 equemene
             block=(1,1,1), grid=(a_np.size,1))
79 269 equemene
    Elapsed=time.time()-TimeIn
80 269 equemene
    print("Execution of kernel : %.3f" % Elapsed)
81 269 equemene
    return(res_np)
82 269 equemene
83 269 equemene
# OpenCL complete operation
84 269 equemene
def OpenCLAddition(a_np,b_np):
85 269 equemene
86 269 equemene
    # Context creation
87 269 equemene
    ctx = cl.create_some_context()
88 269 equemene
    # Every process is stored in a queue
89 269 equemene
    queue = cl.CommandQueue(ctx)
90 269 equemene
91 269 equemene
    TimeIn=time.time()
92 269 equemene
    # Copy from Host to Device using pointers
93 269 equemene
    mf = cl.mem_flags
94 269 equemene
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
95 269 equemene
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
96 269 equemene
    Elapsed=time.time()-TimeIn
97 269 equemene
    print("Copy from Host 2 Device : %.3f" % Elapsed)
98 269 equemene
99 269 equemene
    TimeIn=time.time()
100 269 equemene
    # Definition of kernel under OpenCL
101 269 equemene
    prg = cl.Program(ctx, """
102 269 equemene
__kernel void sum(
103 269 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
104 269 equemene
{
105 269 equemene
  int gid = get_global_id(0);
106 269 equemene
  res_g[gid] = a_g[gid] + b_g[gid];
107 269 equemene
}
108 269 equemene
""").build()
109 269 equemene
    Elapsed=time.time()-TimeIn
110 269 equemene
    print("Building kernels : %.3f" % Elapsed)
111 269 equemene
112 269 equemene
    TimeIn=time.time()
113 269 equemene
    # Memory allocation on Device for result
114 269 equemene
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
115 269 equemene
    Elapsed=time.time()-TimeIn
116 269 equemene
    print("Allocation on Device for results : %.3f" % Elapsed)
117 269 equemene
118 269 equemene
    TimeIn=time.time()
119 269 equemene
    # Synthesis of function "sum" inside Kernel Sources
120 269 equemene
    knl = prg.sum  # Use this Kernel object for repeated calls
121 269 equemene
    Elapsed=time.time()-TimeIn
122 269 equemene
    print("Synthesis of kernel : %.3f" % Elapsed)
123 269 equemene
124 269 equemene
    TimeIn=time.time()
125 269 equemene
    # Call of kernel previously defined
126 269 equemene
    knl(queue, a_np.shape, None, a_g, b_g, res_g)
127 269 equemene
    Elapsed=time.time()-TimeIn
128 269 equemene
    print("Execution of kernel : %.3f" % Elapsed)
129 269 equemene
130 269 equemene
    TimeIn=time.time()
131 269 equemene
    # Creation of vector for result with same size as input vectors
132 269 equemene
    res_np = np.empty_like(a_np)
133 269 equemene
    Elapsed=time.time()-TimeIn
134 269 equemene
    print("Allocation on Host for results: %.3f" % Elapsed)
135 269 equemene
136 269 equemene
    TimeIn=time.time()
137 269 equemene
    # Copy from Device to Host
138 269 equemene
    cl.enqueue_copy(queue, res_np, res_g)
139 269 equemene
    Elapsed=time.time()-TimeIn
140 269 equemene
    print("Copy from Device 2 Host : %.3f" % Elapsed)
141 269 equemene
142 275 equemene
    # Liberation of memory
143 275 equemene
    a_g.release()
144 275 equemene
    b_g.release()
145 275 equemene
    res_g.release()
146 275 equemene
147 269 equemene
    return(res_np)
148 269 equemene
149 269 equemene
# OpenCL complete operation
150 269 equemene
def OpenCLSillyAddition(a_np,b_np):
151 269 equemene
152 269 equemene
    # Context creation
153 269 equemene
    ctx = cl.create_some_context()
154 269 equemene
    # Every process is stored in a queue
155 269 equemene
    queue = cl.CommandQueue(ctx)
156 269 equemene
157 269 equemene
    TimeIn=time.time()
158 269 equemene
    # Copy from Host to Device using pointers
159 269 equemene
    mf = cl.mem_flags
160 269 equemene
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
161 269 equemene
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
162 269 equemene
    Elapsed=time.time()-TimeIn
163 269 equemene
    print("Copy from Host 2 Device : %.3f" % Elapsed)
164 269 equemene
165 269 equemene
    TimeIn=time.time()
166 269 equemene
    # Definition of kernel under OpenCL
167 269 equemene
    prg = cl.Program(ctx, """
168 269 equemene

169 269 equemene
float MySillyFunction(float x)
170 269 equemene
{
171 269 equemene
    return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
172 269 equemene
}
173 269 equemene

174 269 equemene
__kernel void sillysum(
175 269 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
176 269 equemene
{
177 269 equemene
  int gid = get_global_id(0);
178 269 equemene
  res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]);
179 269 equemene
}
180 269 equemene

181 269 equemene
__kernel void sum(
182 269 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
183 269 equemene
{
184 269 equemene
  int gid = get_global_id(0);
185 269 equemene
  res_g[gid] = a_g[gid] + b_g[gid];
186 269 equemene
}
187 269 equemene
""").build()
188 269 equemene
    Elapsed=time.time()-TimeIn
189 269 equemene
    print("Building kernels : %.3f" % Elapsed)
190 269 equemene
191 269 equemene
    TimeIn=time.time()
192 269 equemene
    # Memory allocation on Device for result
193 269 equemene
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
194 269 equemene
    Elapsed=time.time()-TimeIn
195 269 equemene
    print("Allocation on Device for results : %.3f" % Elapsed)
196 269 equemene
197 269 equemene
    TimeIn=time.time()
198 269 equemene
    # Synthesis of function "sillysum" inside Kernel Sources
199 269 equemene
    knl = prg.sillysum  # Use this Kernel object for repeated calls
200 269 equemene
    Elapsed=time.time()-TimeIn
201 269 equemene
    print("Synthesis of kernel : %.3f" % Elapsed)
202 269 equemene
203 269 equemene
    TimeIn=time.time()
204 269 equemene
    # Call of kernel previously defined
205 269 equemene
    CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g)
206 269 equemene
    #
207 269 equemene
    CallCL.wait()
208 269 equemene
    Elapsed=time.time()-TimeIn
209 269 equemene
    print("Execution of kernel : %.3f" % Elapsed)
210 269 equemene
211 269 equemene
    TimeIn=time.time()
212 269 equemene
    # Creation of vector for result with same size as input vectors
213 269 equemene
    res_np = np.empty_like(a_np)
214 269 equemene
    Elapsed=time.time()-TimeIn
215 269 equemene
    print("Allocation on Host for results: %.3f" % Elapsed)
216 269 equemene
217 269 equemene
    TimeIn=time.time()
218 269 equemene
    # Copy from Device to Host
219 269 equemene
    cl.enqueue_copy(queue, res_np, res_g)
220 269 equemene
    Elapsed=time.time()-TimeIn
221 269 equemene
    print("Copy from Device 2 Host : %.3f" % Elapsed)
222 269 equemene
223 275 equemene
    # Liberation of memory
224 275 equemene
    a_g.release()
225 275 equemene
    b_g.release()
226 275 equemene
    res_g.release()
227 275 equemene
228 269 equemene
    return(res_np)
229 269 equemene
230 269 equemene
import sys
231 269 equemene
import time
232 269 equemene
233 269 equemene
if __name__=='__main__':
234 269 equemene
235 269 equemene
    # Size of input vectors definition based on stdin
236 269 equemene
    import sys
237 269 equemene
    try:
238 269 equemene
        SIZE=int(sys.argv[1])
239 269 equemene
        print("Size of vectors set to %i" % SIZE)
240 269 equemene
    except:
241 269 equemene
        SIZE=50000
242 269 equemene
        print("Size of vectors set to default size %i" % SIZE)
243 269 equemene
244 269 equemene
    a_np = np.random.rand(SIZE).astype(np.float32)
245 269 equemene
    b_np = np.random.rand(SIZE).astype(np.float32)
246 269 equemene
247 269 equemene
    # Native Implementation
248 269 equemene
    TimeIn=time.time()
249 269 equemene
    # res_np=NativeAddition(a_np,b_np)
250 269 equemene
    res_np=NativeSillyAddition(a_np,b_np)
251 269 equemene
    NativeElapsed=time.time()-TimeIn
252 269 equemene
    NativeRate=int(SIZE/NativeElapsed)
253 269 equemene
    print("NativeRate: %i" % NativeRate)
254 269 equemene
255 269 equemene
    # OpenCL Implementation
256 269 equemene
    TimeIn=time.time()
257 269 equemene
    # res_cl=OpenCLAddition(a_np,b_np)
258 269 equemene
    res_cl=OpenCLSillyAddition(a_np,b_np)
259 269 equemene
    OpenCLElapsed=time.time()-TimeIn
260 269 equemene
    OpenCLRate=int(SIZE/OpenCLElapsed)
261 269 equemene
    print("OpenCLRate: %i" % OpenCLRate)
262 269 equemene
263 269 equemene
    # CUDA Implementation
264 269 equemene
    TimeIn=time.time()
265 269 equemene
    # res_cuda=CUDAAddition(a_np,b_np)
266 269 equemene
    res_cuda=CUDASillyAddition(a_np,b_np)
267 269 equemene
    CUDAElapsed=time.time()-TimeIn
268 269 equemene
    CUDARate=int(SIZE/CUDAElapsed)
269 269 equemene
    print("CUDARate: %i" % CUDARate)
270 269 equemene
271 269 equemene
    print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate))
272 269 equemene
    print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate))
273 269 equemene
274 269 equemene
   # Check on OpenCL with Numpy:
275 269 equemene
    print(res_cl - res_np)
276 269 equemene
    print(np.linalg.norm(res_cl - res_np))
277 269 equemene
    try:
278 269 equemene
        assert np.allclose(res_np, res_cl)
279 269 equemene
    except:
280 269 equemene
        print("Results between Native & OpenCL seem to be too different!")
281 269 equemene
282 269 equemene
    # Check on CUDA with Numpy:
283 269 equemene
    print(res_cuda - res_np)
284 269 equemene
    print(np.linalg.norm(res_cuda - res_np))
285 269 equemene
    try:
286 269 equemene
        assert np.allclose(res_np, res_cuda)
287 269 equemene
    except:
288 269 equemene
        print("Results between Native & CUDA seem to be too different!")
289 269 equemene