root / ETSN / MySteps_3.py @ 277
Historique | Voir | Annoter | Télécharger (6,89 ko)
1 | 268 | equemene | #!/usr/bin/env python3
|
---|---|---|---|
2 | 268 | equemene | |
3 | 268 | equemene | import numpy as np |
4 | 268 | equemene | import pyopencl as cl |
5 | 268 | equemene | |
6 | 268 | equemene | # piling 16 arithmetical functions
|
7 | 268 | equemene | def MySillyFunction(x): |
8 | 268 | equemene | return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2)) |
9 | 268 | equemene | |
10 | 268 | equemene | # Native Operation under Numpy (for prototyping & tests
|
11 | 268 | equemene | def NativeAddition(a_np,b_np): |
12 | 268 | equemene | return(a_np+b_np)
|
13 | 268 | equemene | |
14 | 268 | equemene | # Native Operation with MySillyFunction under Numpy (for prototyping & tests
|
15 | 268 | equemene | def NativeSillyAddition(a_np,b_np): |
16 | 268 | equemene | return(MySillyFunction(a_np)+MySillyFunction(b_np))
|
17 | 268 | equemene | |
18 | 268 | equemene | # CUDA complete operation
|
19 | 268 | equemene | def CUDAAddition(a_np,b_np): |
20 | 268 | equemene | import pycuda.autoinit |
21 | 268 | equemene | import pycuda.driver as drv |
22 | 268 | equemene | import numpy |
23 | 268 | equemene | |
24 | 268 | equemene | from pycuda.compiler import SourceModule |
25 | 268 | equemene | mod = SourceModule("""
|
26 | 268 | equemene | __global__ void sum(float *dest, float *a, float *b)
|
27 | 268 | equemene | {
|
28 | 268 | equemene | const int i = threadIdx.x;
|
29 | 268 | equemene | dest[i] = a[i] + b[i];
|
30 | 268 | equemene | }
|
31 | 268 | equemene | """)
|
32 | 268 | equemene | |
33 | 268 | equemene | sum = mod.get_function("sum")
|
34 | 268 | equemene | |
35 | 268 | equemene | res_np = numpy.zeros_like(a_np) |
36 | 268 | equemene | sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
|
37 | 268 | equemene | block=(a_np.size,1,1), grid=(1,1)) |
38 | 268 | equemene | return(res_np)
|
39 | 268 | equemene | |
40 | 268 | equemene | # OpenCL complete operation
|
41 | 268 | equemene | def OpenCLAddition(a_np,b_np): |
42 | 268 | equemene | |
43 | 268 | equemene | # Context creation
|
44 | 268 | equemene | ctx = cl.create_some_context() |
45 | 268 | equemene | # Every process is stored in a queue
|
46 | 268 | equemene | queue = cl.CommandQueue(ctx) |
47 | 268 | equemene | |
48 | 268 | equemene | TimeIn=time.time() |
49 | 268 | equemene | # Copy from Host to Device using pointers
|
50 | 268 | equemene | mf = cl.mem_flags |
51 | 268 | equemene | a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
52 | 268 | equemene | b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
53 | 268 | equemene | Elapsed=time.time()-TimeIn |
54 | 268 | equemene | print("Copy from Host 2 Device : %.3f" % Elapsed)
|
55 | 268 | equemene | |
56 | 268 | equemene | TimeIn=time.time() |
57 | 268 | equemene | # Definition of kernel under OpenCL
|
58 | 268 | equemene | prg = cl.Program(ctx, """
|
59 | 268 | equemene | __kernel void sum(
|
60 | 268 | equemene | __global const float *a_g, __global const float *b_g, __global float *res_g)
|
61 | 268 | equemene | {
|
62 | 268 | equemene | int gid = get_global_id(0);
|
63 | 268 | equemene | res_g[gid] = a_g[gid] + b_g[gid];
|
64 | 268 | equemene | }
|
65 | 268 | equemene | """).build()
|
66 | 268 | equemene | Elapsed=time.time()-TimeIn |
67 | 268 | equemene | print("Building kernels : %.3f" % Elapsed)
|
68 | 268 | equemene | |
69 | 268 | equemene | TimeIn=time.time() |
70 | 268 | equemene | # Memory allocation on Device for result
|
71 | 268 | equemene | res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
72 | 268 | equemene | Elapsed=time.time()-TimeIn |
73 | 268 | equemene | print("Allocation on Device for results : %.3f" % Elapsed)
|
74 | 268 | equemene | |
75 | 268 | equemene | TimeIn=time.time() |
76 | 268 | equemene | # Synthesis of function "sum" inside Kernel Sources
|
77 | 268 | equemene | knl = prg.sum # Use this Kernel object for repeated calls
|
78 | 268 | equemene | Elapsed=time.time()-TimeIn |
79 | 268 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
80 | 268 | equemene | |
81 | 268 | equemene | TimeIn=time.time() |
82 | 268 | equemene | # Call of kernel previously defined
|
83 | 268 | equemene | knl(queue, a_np.shape, None, a_g, b_g, res_g)
|
84 | 268 | equemene | Elapsed=time.time()-TimeIn |
85 | 268 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
86 | 268 | equemene | |
87 | 268 | equemene | TimeIn=time.time() |
88 | 268 | equemene | # Creation of vector for result with same size as input vectors
|
89 | 268 | equemene | res_np = np.empty_like(a_np) |
90 | 268 | equemene | Elapsed=time.time()-TimeIn |
91 | 268 | equemene | print("Allocation on Host for results: %.3f" % Elapsed)
|
92 | 268 | equemene | |
93 | 268 | equemene | TimeIn=time.time() |
94 | 268 | equemene | # Copy from Device to Host
|
95 | 268 | equemene | cl.enqueue_copy(queue, res_np, res_g) |
96 | 268 | equemene | Elapsed=time.time()-TimeIn |
97 | 268 | equemene | print("Copy from Device 2 Host : %.3f" % Elapsed)
|
98 | 268 | equemene | |
99 | 275 | equemene | # Liberation of memory
|
100 | 275 | equemene | a_g.release() |
101 | 275 | equemene | b_g.release() |
102 | 275 | equemene | res_g.release() |
103 | 275 | equemene | |
104 | 268 | equemene | return(res_np)
|
105 | 268 | equemene | |
106 | 268 | equemene | # OpenCL complete operation
|
107 | 268 | equemene | def OpenCLSillyAddition(a_np,b_np): |
108 | 268 | equemene | |
109 | 268 | equemene | # Context creation
|
110 | 268 | equemene | ctx = cl.create_some_context() |
111 | 268 | equemene | # Every process is stored in a queue
|
112 | 268 | equemene | queue = cl.CommandQueue(ctx) |
113 | 268 | equemene | |
114 | 268 | equemene | TimeIn=time.time() |
115 | 268 | equemene | # Copy from Host to Device using pointers
|
116 | 268 | equemene | mf = cl.mem_flags |
117 | 268 | equemene | a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
118 | 268 | equemene | b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
119 | 268 | equemene | Elapsed=time.time()-TimeIn |
120 | 268 | equemene | print("Copy from Host 2 Device : %.3f" % Elapsed)
|
121 | 268 | equemene | |
122 | 268 | equemene | TimeIn=time.time() |
123 | 268 | equemene | # Definition of kernel under OpenCL
|
124 | 268 | equemene | prg = cl.Program(ctx, """
|
125 | 268 | equemene |
|
126 | 268 | equemene | float MySillyFunction(float x)
|
127 | 268 | equemene | {
|
128 | 268 | equemene | return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
|
129 | 268 | equemene | }
|
130 | 268 | equemene |
|
131 | 268 | equemene | __kernel void sillysum(
|
132 | 268 | equemene | __global const float *a_g, __global const float *b_g, __global float *res_g)
|
133 | 268 | equemene | {
|
134 | 268 | equemene | int gid = get_global_id(0);
|
135 | 268 | equemene | res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]);
|
136 | 268 | equemene | }
|
137 | 268 | equemene |
|
138 | 268 | equemene | __kernel void sum(
|
139 | 268 | equemene | __global const float *a_g, __global const float *b_g, __global float *res_g)
|
140 | 268 | equemene | {
|
141 | 268 | equemene | int gid = get_global_id(0);
|
142 | 268 | equemene | res_g[gid] = a_g[gid] + b_g[gid];
|
143 | 268 | equemene | }
|
144 | 268 | equemene | """).build()
|
145 | 268 | equemene | Elapsed=time.time()-TimeIn |
146 | 268 | equemene | print("Building kernels : %.3f" % Elapsed)
|
147 | 268 | equemene | |
148 | 268 | equemene | TimeIn=time.time() |
149 | 268 | equemene | # Memory allocation on Device for result
|
150 | 268 | equemene | res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
151 | 268 | equemene | Elapsed=time.time()-TimeIn |
152 | 268 | equemene | print("Allocation on Device for results : %.3f" % Elapsed)
|
153 | 268 | equemene | |
154 | 268 | equemene | TimeIn=time.time() |
155 | 268 | equemene | # Synthesis of function "sillysum" inside Kernel Sources
|
156 | 268 | equemene | knl = prg.sillysum # Use this Kernel object for repeated calls
|
157 | 268 | equemene | Elapsed=time.time()-TimeIn |
158 | 268 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
159 | 268 | equemene | |
160 | 268 | equemene | TimeIn=time.time() |
161 | 268 | equemene | # Call of kernel previously defined
|
162 | 268 | equemene | CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g)
|
163 | 268 | equemene | #
|
164 | 268 | equemene | CallCL.wait() |
165 | 268 | equemene | Elapsed=time.time()-TimeIn |
166 | 268 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
167 | 268 | equemene | |
168 | 268 | equemene | TimeIn=time.time() |
169 | 268 | equemene | # Creation of vector for result with same size as input vectors
|
170 | 268 | equemene | res_np = np.empty_like(a_np) |
171 | 268 | equemene | Elapsed=time.time()-TimeIn |
172 | 268 | equemene | print("Allocation on Host for results: %.3f" % Elapsed)
|
173 | 268 | equemene | |
174 | 268 | equemene | TimeIn=time.time() |
175 | 268 | equemene | # Copy from Device to Host
|
176 | 268 | equemene | cl.enqueue_copy(queue, res_np, res_g) |
177 | 268 | equemene | Elapsed=time.time()-TimeIn |
178 | 268 | equemene | print("Copy from Device 2 Host : %.3f" % Elapsed)
|
179 | 268 | equemene | |
180 | 275 | equemene | # Liberation of memory
|
181 | 275 | equemene | a_g.release() |
182 | 275 | equemene | b_g.release() |
183 | 275 | equemene | res_g.release() |
184 | 275 | equemene | |
185 | 268 | equemene | return(res_np)
|
186 | 268 | equemene | |
187 | 268 | equemene | import sys |
188 | 268 | equemene | import time |
189 | 268 | equemene | |
190 | 268 | equemene | if __name__=='__main__': |
191 | 268 | equemene | |
192 | 268 | equemene | # Size of input vectors definition based on stdin
|
193 | 268 | equemene | import sys |
194 | 268 | equemene | try:
|
195 | 268 | equemene | SIZE=int(sys.argv[1]) |
196 | 268 | equemene | print("Size of vectors set to %i" % SIZE)
|
197 | 268 | equemene | except:
|
198 | 268 | equemene | SIZE=50000
|
199 | 268 | equemene | print("Size of vectors set to default size %i" % SIZE)
|
200 | 268 | equemene | |
201 | 268 | equemene | a_np = np.random.rand(SIZE).astype(np.float32) |
202 | 268 | equemene | b_np = np.random.rand(SIZE).astype(np.float32) |
203 | 268 | equemene | |
204 | 269 | equemene | # Native Implementation
|
205 | 268 | equemene | TimeIn=time.time() |
206 | 268 | equemene | # res_np=NativeSillyAddition(a_np,b_np)
|
207 | 268 | equemene | res_np=NativeAddition(a_np,b_np) |
208 | 268 | equemene | NativeElapsed=time.time()-TimeIn |
209 | 268 | equemene | NativeRate=int(SIZE/NativeElapsed)
|
210 | 268 | equemene | print("NativeRate: %i" % NativeRate)
|
211 | 268 | equemene | |
212 | 269 | equemene | # OpenCL Implementation
|
213 | 268 | equemene | TimeIn=time.time() |
214 | 268 | equemene | # res_cl=OpenCLSillyAddition(a_np,b_np)
|
215 | 268 | equemene | res_cl=OpenCLAddition(a_np,b_np) |
216 | 268 | equemene | OpenCLElapsed=time.time()-TimeIn |
217 | 268 | equemene | OpenCLRate=int(SIZE/OpenCLElapsed)
|
218 | 268 | equemene | print("OpenCLRate: %i" % OpenCLRate)
|
219 | 268 | equemene | |
220 | 269 | equemene | # CUDA Implementation
|
221 | 268 | equemene | TimeIn=time.time() |
222 | 268 | equemene | res_cuda=CUDAAddition(a_np,b_np) |
223 | 268 | equemene | CUDAElapsed=time.time()-TimeIn |
224 | 268 | equemene | CUDARate=int(SIZE/CUDAElapsed)
|
225 | 268 | equemene | print("CUDARate: %i" % CUDARate)
|
226 | 268 | equemene | |
227 | 268 | equemene | print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate))
|
228 | 268 | equemene | print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate))
|
229 | 268 | equemene | |
230 | 268 | equemene | # Check on CPU with Numpy:
|
231 | 268 | equemene | print(res_cl - res_np) |
232 | 268 | equemene | print(np.linalg.norm(res_cl - res_np)) |
233 | 268 | equemene | assert np.allclose(res_np, res_cl)
|
234 | 268 | equemene | |
235 | 268 | equemene | # Check on CPU with Numpy:
|
236 | 268 | equemene | print(res_cuda - res_np) |
237 | 268 | equemene | print(np.linalg.norm(res_cuda - res_np)) |
238 | 268 | equemene | assert np.allclose(res_np, res_cuda) |