Statistiques
| Révision :

root / ETSN / MyDFT_5.py @ 274

Historique | Voir | Annoter | Télécharger (7,12 ko)

1
#!/usr/bin/env python3
2

    
3
import numpy as np
4
import pyopencl as cl
5
from numpy import pi,cos,sin
6

    
7
# Naive Discrete Fourier Transform
8
def MyDFT(x,y):
9
    size=x.shape[0]
10
    X=np.zeros(size).astype(np.float32)
11
    Y=np.zeros(size).astype(np.float32)
12
    for i in range(size):
13
        for j in range(size):
14
            X[i]=X[i]+x[j]*cos(2.*pi*i*j/size)-y[j]*sin(2.*pi*i*j/size)
15
            Y[i]=Y[i]+x[j]*sin(2.*pi*i*j/size)+y[j]*cos(2.*pi*i*j/size)
16
    return(X,Y)
17

    
18
# Numpy Discrete Fourier Transform
19
def NumpyDFT(x,y):
20
    size=x.shape[0]
21
    X=np.zeros(size).astype(np.float32)
22
    Y=np.zeros(size).astype(np.float32)
23
    nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
24
    for i in range(size):
25
        X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y)))
26
        Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y)))
27
    return(X,Y)
28

    
29
# Numba Discrete Fourier Transform
30
import numba
31
@numba.njit(parallel=True)
32
def NumbaDFT(x,y):
33
    size=x.shape[0]
34
    X=np.zeros(size).astype(np.float32)
35
    Y=np.zeros(size).astype(np.float32)
36
    nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
37
    for i in numba.prange(size):
38
        X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y)))
39
        Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y)))
40
    return(X,Y)
41

    
42
# OpenCL complete operation
43
def OpenCLDFT(a_np,b_np):
44

    
45
    # Context creation
46
    ctx = cl.create_some_context()
47
    # Every process is stored in a queue
48
    queue = cl.CommandQueue(ctx)
49

    
50
    TimeIn=time.time()
51
    # Copy from Host to Device using pointers
52
    mf = cl.mem_flags
53
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
54
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
55
    Elapsed=time.time()-TimeIn
56
    print("Copy from Host 2 Device : %.3f" % Elapsed)
57

    
58
    TimeIn=time.time()
59
    # Definition of kernel under OpenCL
60
    prg = cl.Program(ctx, """
61

62
#define PI 3.141592653589793
63

64
__kernel void MyDFT(
65
    __global const float *a_g, __global const float *b_g, __global float *A_g, __global float *B_g)
66
{
67
  int gid = get_global_id(0);
68
  uint size = get_global_size(0);
69
  float A=0.,B=0.;
70
  for (uint i=0; i<size;i++) 
71
  {
72
     A+=a_g[i]*cos(2.*PI*(float)(gid*i)/(float)size)-b_g[i]*sin(2.*PI*(float)(gid*i)/(float)size);
73
     B+=a_g[i]*sin(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*cos(2.*PI*(float)(gid*i)/(float)size);
74
  }
75
  A_g[gid]=A;
76
  B_g[gid]=B;
77
}
78
""").build()
79
    Elapsed=time.time()-TimeIn
80
    print("Building kernels : %.3f" % Elapsed)
81
    
82
    TimeIn=time.time()
83
    # Memory allocation on Device for result
84
    A_ocl = np.empty_like(a_np)
85
    B_ocl = np.empty_like(a_np)
86
    Elapsed=time.time()-TimeIn
87
    print("Allocation on Host for results : %.3f" % Elapsed)
88

    
89
    A_g = cl.Buffer(ctx, mf.WRITE_ONLY, A_ocl.nbytes)
90
    B_g = cl.Buffer(ctx, mf.WRITE_ONLY, B_ocl.nbytes)
91
    Elapsed=time.time()-TimeIn
92
    print("Allocation on Device for results : %.3f" % Elapsed)
93

    
94
    TimeIn=time.time()
95
    # Synthesis of function "sillysum" inside Kernel Sources
96
    knl = prg.MyDFT  # Use this Kernel object for repeated calls
97
    Elapsed=time.time()-TimeIn
98
    print("Synthesis of kernel : %.3f" % Elapsed)
99

    
100
    TimeIn=time.time()
101
    # Call of kernel previously defined 
102
    CallCL=knl(queue, a_np.shape, None, a_g, b_g, A_g, B_g)
103
    # 
104
    CallCL.wait()
105
    Elapsed=time.time()-TimeIn
106
    print("Execution of kernel : %.3f" % Elapsed)
107

    
108
    TimeIn=time.time()
109
    # Copy from Device to Host
110
    cl.enqueue_copy(queue, A_ocl, A_g)
111
    cl.enqueue_copy(queue, B_ocl, B_g)
112
    Elapsed=time.time()-TimeIn
113
    print("Copy from Device 2 Host : %.3f" % Elapsed)
114

    
115
    return(A_ocl,B_ocl)
116

    
117
# CUDA Silly complete operation
118
def CUDADFT(a_np,b_np):
119
    import pycuda.autoinit
120
    import pycuda.driver as drv
121
    import numpy
122

    
123
    from pycuda.compiler import SourceModule
124
    TimeIn=time.time()
125
    mod = SourceModule("""
126

127
#define PI 3.141592653589793
128

129
__global__ void MyDFT(float *A_g, float *B_g, const float *a_g,const float *b_g)
130
{
131
  const int gid = blockIdx.x;
132
  uint size = gridDim.x;
133
  float A=0.,B=0.;
134
  for (uint i=0; i<size;i++) 
135
  {
136
     A+=a_g[i]*cos(2.*PI*(float)(gid*i)/(float)size)-b_g[i]*sin(2.*PI*(float)(gid*i)/(float)size);
137
     B+=a_g[i]*sin(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*cos(2.*PI*(float)(gid*i)/(float)size);
138
  }
139
  A_g[gid]=A;
140
  B_g[gid]=B;
141
}
142

143
""")
144
    Elapsed=time.time()-TimeIn
145
    print("Definition of kernel : %.3f" % Elapsed)
146

    
147
    TimeIn=time.time()
148
    MyDFT = mod.get_function("MyDFT")
149
    Elapsed=time.time()-TimeIn
150
    print("Synthesis of kernel : %.3f" % Elapsed)
151

    
152
    TimeIn=time.time()
153
    A_np = numpy.zeros_like(a_np)
154
    B_np = numpy.zeros_like(a_np)
155
    Elapsed=time.time()-TimeIn
156
    print("Allocation on Host for results : %.3f" % Elapsed)
157

    
158
    TimeIn=time.time()
159
    MyDFT(drv.Out(A_np), drv.Out(B_np), drv.In(a_np), drv.In(b_np),
160
          block=(1,1,1), grid=(a_np.size,1))
161
    Elapsed=time.time()-TimeIn
162
    print("Execution of kernel : %.3f" % Elapsed)
163
    return(A_np,B_np)
164

    
165
import sys
166
import time
167

    
168
if __name__=='__main__':
169

    
170
    # Size of input vectors definition based on stdin
171
    import sys
172
    try:
173
        SIZE=int(sys.argv[1])
174
        print("Size of vectors set to %i" % SIZE)
175
    except: 
176
        SIZE=256
177
        print("Size of vectors set to default size %i" % SIZE)
178
        
179
    a_np = np.ones(SIZE).astype(np.float32)
180
    b_np = np.ones(SIZE).astype(np.float32)
181

    
182
    C_np = np.zeros(SIZE).astype(np.float32)
183
    D_np = np.zeros(SIZE).astype(np.float32)
184
    C_np[0] = np.float32(SIZE)
185
    D_np[0] = np.float32(SIZE)
186
    
187
    # # Native & Naive Implementation
188
    # print("Performing naive implementation")
189
    # TimeIn=time.time()
190
    # c_np,d_np=MyDFT(a_np,b_np)
191
    # NativeElapsed=time.time()-TimeIn
192
    # NativeRate=int(SIZE/NativeElapsed)
193
    # print("NativeRate: %i" % NativeRate)
194
    # print("Precision: ",np.linalg.norm(c_np-C_np),np.linalg.norm(d_np-D_np)) 
195

    
196
    # Native & Numpy Implementation
197
    print("Performing Numpy implementation")
198
    TimeIn=time.time()
199
    e_np,f_np=NumpyDFT(a_np,b_np)
200
    NumpyElapsed=time.time()-TimeIn
201
    NumpyRate=int(SIZE/NumpyElapsed)
202
    print("NumpyRate: %i" % NumpyRate)
203
    print("Precision: ",np.linalg.norm(e_np-C_np),np.linalg.norm(f_np-D_np)) 
204
        
205
    # Native & Numba Implementation
206
    print("Performing Numba implementation")
207
    TimeIn=time.time()
208
    g_np,h_np=NumbaDFT(a_np,b_np)
209
    NumbaElapsed=time.time()-TimeIn
210
    NumbaRate=int(SIZE/NumbaElapsed)
211
    print("NumbaRate: %i" % NumbaRate)
212
    print("Precision: ",np.linalg.norm(g_np-C_np),np.linalg.norm(h_np-D_np)) 
213
    
214
    # OpenCL Implementation
215
    print("Performing OpenCL implementation")
216
    TimeIn=time.time()
217
    i_np,j_np=OpenCLDFT(a_np,b_np)
218
    OpenCLElapsed=time.time()-TimeIn
219
    OpenCLRate=int(SIZE/OpenCLElapsed)
220
    print("OpenCLRate: %i" % OpenCLRate)
221
    print("Precision: ",np.linalg.norm(i_np-C_np),np.linalg.norm(j_np-D_np)) 
222
    
223
    # CUDA Implementation
224
    print("Performing CUDA implementation")
225
    TimeIn=time.time()
226
    k_np,l_np=CUDADFT(a_np,b_np)
227
    CUDAElapsed=time.time()-TimeIn
228
    CUDARate=int(SIZE/CUDAElapsed)
229
    print("CUDARate: %i" % CUDARate)
230
    print("Precision: ",np.linalg.norm(k_np-C_np),np.linalg.norm(l_np-D_np)) 
231