Révision 273
ETSN/MyDFT_4.py (revision 273) | ||
---|---|---|
164 | 164 |
print("Precision: ",np.linalg.norm(g_np-C_np),np.linalg.norm(h_np-D_np)) |
165 | 165 |
|
166 | 166 |
# OpenCL Implementation |
167 |
print("Performing OpenCL implementation") |
|
167 | 168 |
TimeIn=time.time() |
168 | 169 |
i_np,j_np=OpenCLDFT(a_np,b_np) |
169 | 170 |
OpenCLElapsed=time.time()-TimeIn |
ETSN/MyDFT_5.py (revision 273) | ||
---|---|---|
212 | 212 |
print("Precision: ",np.linalg.norm(g_np-C_np),np.linalg.norm(h_np-D_np)) |
213 | 213 |
|
214 | 214 |
# OpenCL Implementation |
215 |
print("Performing OpenCL implementation") |
|
215 | 216 |
TimeIn=time.time() |
216 | 217 |
i_np,j_np=OpenCLDFT(a_np,b_np) |
217 | 218 |
OpenCLElapsed=time.time()-TimeIn |
... | ... | |
220 | 221 |
print("Precision: ",np.linalg.norm(i_np-C_np),np.linalg.norm(j_np-D_np)) |
221 | 222 |
|
222 | 223 |
# CUDA Implementation |
224 |
print("Performing CUDA implementation") |
|
223 | 225 |
TimeIn=time.time() |
224 | 226 |
k_np,l_np=CUDADFT(a_np,b_np) |
225 | 227 |
CUDAElapsed=time.time()-TimeIn |
ETSN/MyDFT_5b.py (revision 273) | ||
---|---|---|
152 | 152 |
print("Synthesis of kernel : %.3f" % Elapsed) |
153 | 153 |
|
154 | 154 |
TimeIn=time.time() |
155 |
A_np = numpy.zeros_like(a_np)
|
|
156 |
B_np = numpy.zeros_like(a_np)
|
|
155 |
A_np = np.zeros_like(a_np)
|
|
156 |
B_np = np.zeros_like(a_np)
|
|
157 | 157 |
Elapsed=time.time()-TimeIn |
158 | 158 |
print("Allocation on Host for results : %.3f" % Elapsed) |
159 | 159 |
|
... | ... | |
216 | 216 |
print("Precision: ",np.linalg.norm(g_np-C_np),np.linalg.norm(h_np-D_np)) |
217 | 217 |
|
218 | 218 |
# OpenCL Implementation |
219 |
print("Performing OpenCL implementation") |
|
219 | 220 |
TimeIn=time.time() |
220 | 221 |
i_np,j_np=OpenCLDFT(a_np,b_np) |
221 | 222 |
OpenCLElapsed=time.time()-TimeIn |
... | ... | |
224 | 225 |
print("Precision: ",np.linalg.norm(i_np-C_np),np.linalg.norm(j_np-D_np)) |
225 | 226 |
|
226 | 227 |
# CUDA Implementation |
228 |
print("Performing CUDA implementation") |
|
227 | 229 |
TimeIn=time.time() |
228 | 230 |
k_np,l_np=CUDADFT(a_np,b_np) |
229 | 231 |
CUDAElapsed=time.time()-TimeIn |
Formats disponibles : Unified diff