Révision 271 ETSN/MyDFT_2.py

MyDFT_2.py (revision 271)
3 3
import numpy as np
4 4
import pyopencl as cl
5 5

  
6
# piling 16 arithmetical functions
7
def MySillyFunction(x):
8
    return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2))
9

  
10
# Native Operation under Numpy (for prototyping & tests
11
def NativeAddition(a_np,b_np):
12
    return(a_np+b_np)
13

  
14
# Native Operation with MySillyFunction under Numpy (for prototyping & tests
15
def NativeSillyAddition(a_np,b_np):
16
    return(MySillyFunction(a_np)+MySillyFunction(b_np))
17

  
18 6
# Naive Discrete Fourier Transform
19 7
def MyDFT(x,y):
20 8
    from numpy import pi,cos,sin
......
39 27
        Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y)))
40 28
    return(X,Y)
41 29

  
42
# CUDA complete operation
43
def CUDAAddition(a_np,b_np):
44
    import pycuda.autoinit
45
    import pycuda.driver as drv
46
    import numpy
47

  
48
    from pycuda.compiler import SourceModule
49
    mod = SourceModule("""
50
    __global__ void sum(float *dest, float *a, float *b)
51
{
52
  // const int i = threadIdx.x;
53
  const int i = blockIdx.x;
54
  dest[i] = a[i] + b[i];
55
}
56
""")
57

  
58
    # sum = mod.get_function("sum")
59
    sum = mod.get_function("sum")
60

  
61
    res_np = numpy.zeros_like(a_np)
62
    sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
63
        block=(1,1,1), grid=(a_np.size,1))
64
    return(res_np)
65

  
66
# CUDA Silly complete operation
67
def CUDASillyAddition(a_np,b_np):
68
    import pycuda.autoinit
69
    import pycuda.driver as drv
70
    import numpy
71

  
72
    from pycuda.compiler import SourceModule
73
    TimeIn=time.time()
74
    mod = SourceModule("""
75
__device__ float MySillyFunction(float x)
76
{
77
    return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2)); 
78
}
79

  
80
__global__ void sillysum(float *dest, float *a, float *b)
81
{
82
  const int i = blockIdx.x;
83
  dest[i] = MySillyFunction(a[i]) + MySillyFunction(b[i]);
84
}
85
""")
86
    Elapsed=time.time()-TimeIn
87
    print("Definition of kernel : %.3f" % Elapsed)
88

  
89
    TimeIn=time.time()
90
    # sum = mod.get_function("sum")
91
    sillysum = mod.get_function("sillysum")
92
    Elapsed=time.time()-TimeIn
93
    print("Synthesis of kernel : %.3f" % Elapsed)
94

  
95
    TimeIn=time.time()
96
    res_np = numpy.zeros_like(a_np)
97
    Elapsed=time.time()-TimeIn
98
    print("Allocation on Host for results : %.3f" % Elapsed)
99

  
100
    TimeIn=time.time()
101
    sillysum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
102
             block=(1,1,1), grid=(a_np.size,1))
103
    Elapsed=time.time()-TimeIn
104
    print("Execution of kernel : %.3f" % Elapsed)
105
    return(res_np)
106

  
107
# OpenCL complete operation
108
def OpenCLAddition(a_np,b_np):
109

  
110
    # Context creation
111
    ctx = cl.create_some_context()
112
    # Every process is stored in a queue
113
    queue = cl.CommandQueue(ctx)
114

  
115
    TimeIn=time.time()
116
    # Copy from Host to Device using pointers
117
    mf = cl.mem_flags
118
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
119
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
120
    Elapsed=time.time()-TimeIn
121
    print("Copy from Host 2 Device : %.3f" % Elapsed)
122

  
123
    TimeIn=time.time()
124
    # Definition of kernel under OpenCL
125
    prg = cl.Program(ctx, """
126
__kernel void sum(
127
    __global const float *a_g, __global const float *b_g, __global float *res_g)
128
{
129
  int gid = get_global_id(0);
130
  res_g[gid] = a_g[gid] + b_g[gid];
131
}
132
""").build()
133
    Elapsed=time.time()-TimeIn
134
    print("Building kernels : %.3f" % Elapsed)
135
    
136
    TimeIn=time.time()
137
    # Memory allocation on Device for result
138
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
139
    Elapsed=time.time()-TimeIn
140
    print("Allocation on Device for results : %.3f" % Elapsed)
141

  
142
    TimeIn=time.time()
143
    # Synthesis of function "sum" inside Kernel Sources
144
    knl = prg.sum  # Use this Kernel object for repeated calls
145
    Elapsed=time.time()-TimeIn
146
    print("Synthesis of kernel : %.3f" % Elapsed)
147

  
148
    TimeIn=time.time()
149
    # Call of kernel previously defined 
150
    knl(queue, a_np.shape, None, a_g, b_g, res_g)
151
    Elapsed=time.time()-TimeIn
152
    print("Execution of kernel : %.3f" % Elapsed)
153

  
154
    TimeIn=time.time()
155
    # Creation of vector for result with same size as input vectors
156
    res_np = np.empty_like(a_np)
157
    Elapsed=time.time()-TimeIn
158
    print("Allocation on Host for results: %.3f" % Elapsed)
159

  
160
    TimeIn=time.time()
161
    # Copy from Device to Host
162
    cl.enqueue_copy(queue, res_np, res_g)
163
    Elapsed=time.time()-TimeIn
164
    print("Copy from Device 2 Host : %.3f" % Elapsed)
165

  
166
    return(res_np)
167

  
168
# OpenCL complete operation
169
def OpenCLSillyAddition(a_np,b_np):
170

  
171
    # Context creation
172
    ctx = cl.create_some_context()
173
    # Every process is stored in a queue
174
    queue = cl.CommandQueue(ctx)
175

  
176
    TimeIn=time.time()
177
    # Copy from Host to Device using pointers
178
    mf = cl.mem_flags
179
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
180
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
181
    Elapsed=time.time()-TimeIn
182
    print("Copy from Host 2 Device : %.3f" % Elapsed)
183

  
184
    TimeIn=time.time()
185
    # Definition of kernel under OpenCL
186
    prg = cl.Program(ctx, """
187

  
188
float MySillyFunction(float x)
189
{
190
    return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2)); 
191
}
192

  
193
__kernel void sillysum(
194
    __global const float *a_g, __global const float *b_g, __global float *res_g)
195
{
196
  int gid = get_global_id(0);
197
  res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]);
198
}
199

  
200
__kernel void sum(
201
    __global const float *a_g, __global const float *b_g, __global float *res_g)
202
{
203
  int gid = get_global_id(0);
204
  res_g[gid] = a_g[gid] + b_g[gid];
205
}
206
""").build()
207
    Elapsed=time.time()-TimeIn
208
    print("Building kernels : %.3f" % Elapsed)
209
    
210
    TimeIn=time.time()
211
    # Memory allocation on Device for result
212
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
213
    Elapsed=time.time()-TimeIn
214
    print("Allocation on Device for results : %.3f" % Elapsed)
215

  
216
    TimeIn=time.time()
217
    # Synthesis of function "sillysum" inside Kernel Sources
218
    knl = prg.sillysum  # Use this Kernel object for repeated calls
219
    Elapsed=time.time()-TimeIn
220
    print("Synthesis of kernel : %.3f" % Elapsed)
221

  
222
    TimeIn=time.time()
223
    # Call of kernel previously defined 
224
    CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g)
225
    # 
226
    CallCL.wait()
227
    Elapsed=time.time()-TimeIn
228
    print("Execution of kernel : %.3f" % Elapsed)
229

  
230
    TimeIn=time.time()
231
    # Creation of vector for result with same size as input vectors
232
    res_np = np.empty_like(a_np)
233
    Elapsed=time.time()-TimeIn
234
    print("Allocation on Host for results: %.3f" % Elapsed)
235

  
236
    TimeIn=time.time()
237
    # Copy from Device to Host
238
    cl.enqueue_copy(queue, res_np, res_g)
239
    Elapsed=time.time()-TimeIn
240
    print("Copy from Device 2 Host : %.3f" % Elapsed)
241

  
242
    return(res_np)
243

  
244 30
import sys
245 31
import time
246 32

  
......
252 38
        SIZE=int(sys.argv[1])
253 39
        print("Size of vectors set to %i" % SIZE)
254 40
    except: 
255
        SIZE=50000
41
        SIZE=256
256 42
        print("Size of vectors set to default size %i" % SIZE)
257 43
        
258
    # a_np = np.random.rand(SIZE).astype(np.float32)
259
    # b_np = np.random.rand(SIZE).astype(np.float32)
260
    
261 44
    a_np = np.ones(SIZE).astype(np.float32)
262 45
    b_np = np.ones(SIZE).astype(np.float32)
263 46

  
47
    C_np = np.zeros(SIZE).astype(np.float32)
48
    D_np = np.zeros(SIZE).astype(np.float32)
49
    C_np[0] = np.float32(SIZE)
50
    D_np[0] = np.float32(SIZE)
51
    
264 52
    # Native & Naive Implementation
265 53
    print("Performing naive implementation")
266 54
    TimeIn=time.time()
......
268 56
    NativeElapsed=time.time()-TimeIn
269 57
    NativeRate=int(SIZE/NativeElapsed)
270 58
    print("NativeRate: %i" % NativeRate)
271
    print(c_np,d_np)
59
    print("Precision: ",np.linalg.norm(c_np-C_np),np.linalg.norm(d_np-D_np)) 
272 60
    
273 61
    # Native & Numpy Implementation
274 62
    print("Performing Numpy implementation")
......
277 65
    NumpyElapsed=time.time()-TimeIn
278 66
    NumpyRate=int(SIZE/NumpyElapsed)
279 67
    print("NumpyRate: %i" % NumpyRate)
280
    print(e_np,f_np) 
281

  
282
    print(np.linalg.norm(c_np-e_np))
283
    print(np.linalg.norm(d_np-f_np))
284
    
285
   #  # OpenCL Implementation
286
   #  TimeIn=time.time()
287
   #  # res_cl=OpenCLAddition(a_np,b_np)
288
   #  res_cl=OpenCLSillyAddition(a_np,b_np)
289
   #  OpenCLElapsed=time.time()-TimeIn
290
   #  OpenCLRate=int(SIZE/OpenCLElapsed)
291
   #  print("OpenCLRate: %i" % OpenCLRate)
292

  
293
   #  # CUDA Implementation
294
   #  TimeIn=time.time()
295
   #  # res_cuda=CUDAAddition(a_np,b_np)
296
   #  res_cuda=CUDASillyAddition(a_np,b_np)
297
   #  CUDAElapsed=time.time()-TimeIn
298
   #  CUDARate=int(SIZE/CUDAElapsed)
299
   #  print("CUDARate: %i" % CUDARate)
300
    
301
   #  print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate))
302
   #  print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate))
303
    
304
   # # Check on OpenCL with Numpy:
305
   #  print(res_cl - res_np)
306
   #  print(np.linalg.norm(res_cl - res_np))
307
   #  try:
308
   #      assert np.allclose(res_np, res_cl)
309
   #  except:
310
   #      print("Results between Native & OpenCL seem to be too different!")
311
        
312
   #  # Check on CUDA with Numpy:
313
   #  print(res_cuda - res_np)
314
   #  print(np.linalg.norm(res_cuda - res_np))
315
   #  try:
316
   #      assert np.allclose(res_np, res_cuda)
317
   #  except:
318
   #      print("Results between Native & CUDA seem to be too different!")
319

  
320

  
68
    print("Precision: ",np.linalg.norm(e_np-C_np),np.linalg.norm(f_np-D_np)) 

Formats disponibles : Unified diff