Statistiques
| Révision :

root / ETSN / MySteps_4.py @ 270

Historique | Voir | Annoter | Télécharger (6,96 ko)

1
#!/usr/bin/env python3
2

    
3
import numpy as np
4
import pyopencl as cl
5

    
6
# piling 16 arithmetical functions
7
def MySillyFunction(x):
8
    return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2))
9

    
10
# Native Operation under Numpy (for prototyping & tests
11
def NativeAddition(a_np,b_np):
12
    return(a_np+b_np)
13

    
14
# Native Operation with MySillyFunction under Numpy (for prototyping & tests
15
def NativeSillyAddition(a_np,b_np):
16
    return(MySillyFunction(a_np)+MySillyFunction(b_np))
17

    
18
# CUDA complete operation
19
def CUDAAddition(a_np,b_np):
20
    import pycuda.autoinit
21
    import pycuda.driver as drv
22
    import numpy
23

    
24
    from pycuda.compiler import SourceModule
25
    mod = SourceModule("""
26
    __global__ void sum(float *dest, float *a, float *b)
27
{
28
  // const int i = threadIdx.x;
29
  const int i = blockIdx.x;
30
  dest[i] = a[i] + b[i];
31
}
32
""")
33

    
34
    sum = mod.get_function("sum")
35

    
36
    res_np = numpy.zeros_like(a_np)
37
    sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
38
        block=(1,1,1), grid=(a_np.size,1))
39
    return(res_np)
40

    
41
# OpenCL complete operation
42
def OpenCLAddition(a_np,b_np):
43

    
44
    # Context creation
45
    ctx = cl.create_some_context()
46
    # Every process is stored in a queue
47
    queue = cl.CommandQueue(ctx)
48

    
49
    TimeIn=time.time()
50
    # Copy from Host to Device using pointers
51
    mf = cl.mem_flags
52
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
53
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
54
    Elapsed=time.time()-TimeIn
55
    print("Copy from Host 2 Device : %.3f" % Elapsed)
56

    
57
    TimeIn=time.time()
58
    # Definition of kernel under OpenCL
59
    prg = cl.Program(ctx, """
60
__kernel void sum(
61
    __global const float *a_g, __global const float *b_g, __global float *res_g)
62
{
63
  int gid = get_global_id(0);
64
  res_g[gid] = a_g[gid] + b_g[gid];
65
}
66
""").build()
67
    Elapsed=time.time()-TimeIn
68
    print("Building kernels : %.3f" % Elapsed)
69
    
70
    TimeIn=time.time()
71
    # Memory allocation on Device for result
72
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
73
    Elapsed=time.time()-TimeIn
74
    print("Allocation on Device for results : %.3f" % Elapsed)
75

    
76
    TimeIn=time.time()
77
    # Synthesis of function "sum" inside Kernel Sources
78
    knl = prg.sum  # Use this Kernel object for repeated calls
79
    Elapsed=time.time()-TimeIn
80
    print("Synthesis of kernel : %.3f" % Elapsed)
81

    
82
    TimeIn=time.time()
83
    # Call of kernel previously defined 
84
    knl(queue, a_np.shape, None, a_g, b_g, res_g)
85
    Elapsed=time.time()-TimeIn
86
    print("Execution of kernel : %.3f" % Elapsed)
87

    
88
    TimeIn=time.time()
89
    # Creation of vector for result with same size as input vectors
90
    res_np = np.empty_like(a_np)
91
    Elapsed=time.time()-TimeIn
92
    print("Allocation on Host for results: %.3f" % Elapsed)
93

    
94
    TimeIn=time.time()
95
    # Copy from Device to Host
96
    cl.enqueue_copy(queue, res_np, res_g)
97
    Elapsed=time.time()-TimeIn
98
    print("Copy from Device 2 Host : %.3f" % Elapsed)
99

    
100
    return(res_np)
101

    
102
# OpenCL complete operation
103
def OpenCLSillyAddition(a_np,b_np):
104

    
105
    # Context creation
106
    ctx = cl.create_some_context()
107
    # Every process is stored in a queue
108
    queue = cl.CommandQueue(ctx)
109

    
110
    TimeIn=time.time()
111
    # Copy from Host to Device using pointers
112
    mf = cl.mem_flags
113
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
114
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
115
    Elapsed=time.time()-TimeIn
116
    print("Copy from Host 2 Device : %.3f" % Elapsed)
117

    
118
    TimeIn=time.time()
119
    # Definition of kernel under OpenCL
120
    prg = cl.Program(ctx, """
121

122
float MySillyFunction(float x)
123
{
124
    return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2)); 
125
}
126

127
__kernel void sillysum(
128
    __global const float *a_g, __global const float *b_g, __global float *res_g)
129
{
130
  int gid = get_global_id(0);
131
  res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]);
132
}
133

134
__kernel void sum(
135
    __global const float *a_g, __global const float *b_g, __global float *res_g)
136
{
137
  int gid = get_global_id(0);
138
  res_g[gid] = a_g[gid] + b_g[gid];
139
}
140
""").build()
141
    Elapsed=time.time()-TimeIn
142
    print("Building kernels : %.3f" % Elapsed)
143
    
144
    TimeIn=time.time()
145
    # Memory allocation on Device for result
146
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
147
    Elapsed=time.time()-TimeIn
148
    print("Allocation on Device for results : %.3f" % Elapsed)
149

    
150
    TimeIn=time.time()
151
    # Synthesis of function "sillysum" inside Kernel Sources
152
    knl = prg.sillysum  # Use this Kernel object for repeated calls
153
    Elapsed=time.time()-TimeIn
154
    print("Synthesis of kernel : %.3f" % Elapsed)
155

    
156
    TimeIn=time.time()
157
    # Call of kernel previously defined 
158
    CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g)
159
    # 
160
    CallCL.wait()
161
    Elapsed=time.time()-TimeIn
162
    print("Execution of kernel : %.3f" % Elapsed)
163

    
164
    TimeIn=time.time()
165
    # Creation of vector for result with same size as input vectors
166
    res_np = np.empty_like(a_np)
167
    Elapsed=time.time()-TimeIn
168
    print("Allocation on Host for results: %.3f" % Elapsed)
169

    
170
    TimeIn=time.time()
171
    # Copy from Device to Host
172
    cl.enqueue_copy(queue, res_np, res_g)
173
    Elapsed=time.time()-TimeIn
174
    print("Copy from Device 2 Host : %.3f" % Elapsed)
175

    
176
    return(res_np)
177

    
178
import sys
179
import time
180

    
181
if __name__=='__main__':
182

    
183
    # Size of input vectors definition based on stdin
184
    import sys
185
    try:
186
        SIZE=int(sys.argv[1])
187
        print("Size of vectors set to %i" % SIZE)
188
    except: 
189
        SIZE=50000
190
        print("Size of vectors set to default size %i" % SIZE)
191
        
192
    a_np = np.random.rand(SIZE).astype(np.float32)
193
    b_np = np.random.rand(SIZE).astype(np.float32)
194

    
195
    # Native Implementation
196
    TimeIn=time.time()
197
    # res_np=NativeSillyAddition(a_np,b_np)
198
    res_np=NativeAddition(a_np,b_np)
199
    NativeElapsed=time.time()-TimeIn
200
    NativeRate=int(SIZE/NativeElapsed)
201
    print("NativeRate: %i" % NativeRate)
202

    
203
    # OpenCL Implementation
204
    TimeIn=time.time()
205
    # res_cl=OpenCLSillyAddition(a_np,b_np)
206
    res_cl=OpenCLAddition(a_np,b_np)
207
    OpenCLElapsed=time.time()-TimeIn
208
    OpenCLRate=int(SIZE/OpenCLElapsed)
209
    print("OpenCLRate: %i" % OpenCLRate)
210

    
211
    # CUDA Implementation
212
    TimeIn=time.time()
213
    res_cuda=CUDAAddition(a_np,b_np)
214
    CUDAElapsed=time.time()-TimeIn
215
    CUDARate=int(SIZE/CUDAElapsed)
216
    print("CUDARate: %i" % CUDARate)
217
    
218
    print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate))
219
    print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate))
220
    
221
    # Check on OpenCL with Numpy:
222
    print(res_cl - res_np)
223
    print(np.linalg.norm(res_cl - res_np))
224
    try:
225
        assert np.allclose(res_np, res_cl)
226
    except:
227
        print("Results between Native & OpenCL seem to be too different!")
228
        
229
    # Check on CUDA with Numpy:
230
    print(res_cuda - res_np)
231
    print(np.linalg.norm(res_cuda - res_np))
232
    try:
233
        assert np.allclose(res_np, res_cuda)
234
    except:
235
        print("Results between Native & CUDA seem to be too different!")
236

    
237