root / ETSN / MyDFT_2.py @ 270
Historique | Voir | Annoter | Télécharger (9,59 ko)
1 | 270 | equemene | #!/usr/bin/env python3
|
---|---|---|---|
2 | 270 | equemene | |
3 | 270 | equemene | import numpy as np |
4 | 270 | equemene | import pyopencl as cl |
5 | 270 | equemene | |
6 | 270 | equemene | # piling 16 arithmetical functions
|
7 | 270 | equemene | def MySillyFunction(x): |
8 | 270 | equemene | return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2)) |
9 | 270 | equemene | |
10 | 270 | equemene | # Native Operation under Numpy (for prototyping & tests
|
11 | 270 | equemene | def NativeAddition(a_np,b_np): |
12 | 270 | equemene | return(a_np+b_np)
|
13 | 270 | equemene | |
14 | 270 | equemene | # Native Operation with MySillyFunction under Numpy (for prototyping & tests
|
15 | 270 | equemene | def NativeSillyAddition(a_np,b_np): |
16 | 270 | equemene | return(MySillyFunction(a_np)+MySillyFunction(b_np))
|
17 | 270 | equemene | |
18 | 270 | equemene | # Naive Discrete Fourier Transform
|
19 | 270 | equemene | def MyDFT(x,y): |
20 | 270 | equemene | from numpy import pi,cos,sin |
21 | 270 | equemene | size=x.shape[0]
|
22 | 270 | equemene | X=np.zeros(size).astype(np.float32) |
23 | 270 | equemene | Y=np.zeros(size).astype(np.float32) |
24 | 270 | equemene | for i in range(size): |
25 | 270 | equemene | for j in range(size): |
26 | 270 | equemene | X[i]=X[i]+x[j]*cos(2.*pi*i*j/size)-y[j]*sin(2.*pi*i*j/size) |
27 | 270 | equemene | Y[i]=Y[i]+x[j]*sin(2.*pi*i*j/size)+y[j]*cos(2.*pi*i*j/size) |
28 | 270 | equemene | return(X,Y)
|
29 | 270 | equemene | |
30 | 270 | equemene | # Numpy Discrete Fourier Transform
|
31 | 270 | equemene | def NumpyDFT(x,y): |
32 | 270 | equemene | from numpy import pi,cos,sin |
33 | 270 | equemene | size=x.shape[0]
|
34 | 270 | equemene | X=np.zeros(size).astype(np.float32) |
35 | 270 | equemene | Y=np.zeros(size).astype(np.float32) |
36 | 270 | equemene | nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
37 | 270 | equemene | for i in range(size): |
38 | 270 | equemene | X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
39 | 270 | equemene | Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y))) |
40 | 270 | equemene | return(X,Y)
|
41 | 270 | equemene | |
42 | 270 | equemene | # CUDA complete operation
|
43 | 270 | equemene | def CUDAAddition(a_np,b_np): |
44 | 270 | equemene | import pycuda.autoinit |
45 | 270 | equemene | import pycuda.driver as drv |
46 | 270 | equemene | import numpy |
47 | 270 | equemene | |
48 | 270 | equemene | from pycuda.compiler import SourceModule |
49 | 270 | equemene | mod = SourceModule("""
|
50 | 270 | equemene | __global__ void sum(float *dest, float *a, float *b)
|
51 | 270 | equemene | {
|
52 | 270 | equemene | // const int i = threadIdx.x;
|
53 | 270 | equemene | const int i = blockIdx.x;
|
54 | 270 | equemene | dest[i] = a[i] + b[i];
|
55 | 270 | equemene | }
|
56 | 270 | equemene | """)
|
57 | 270 | equemene | |
58 | 270 | equemene | # sum = mod.get_function("sum")
|
59 | 270 | equemene | sum = mod.get_function("sum")
|
60 | 270 | equemene | |
61 | 270 | equemene | res_np = numpy.zeros_like(a_np) |
62 | 270 | equemene | sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
|
63 | 270 | equemene | block=(1,1,1), grid=(a_np.size,1)) |
64 | 270 | equemene | return(res_np)
|
65 | 270 | equemene | |
66 | 270 | equemene | # CUDA Silly complete operation
|
67 | 270 | equemene | def CUDASillyAddition(a_np,b_np): |
68 | 270 | equemene | import pycuda.autoinit |
69 | 270 | equemene | import pycuda.driver as drv |
70 | 270 | equemene | import numpy |
71 | 270 | equemene | |
72 | 270 | equemene | from pycuda.compiler import SourceModule |
73 | 270 | equemene | TimeIn=time.time() |
74 | 270 | equemene | mod = SourceModule("""
|
75 | 270 | equemene | __device__ float MySillyFunction(float x)
|
76 | 270 | equemene | {
|
77 | 270 | equemene | return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
|
78 | 270 | equemene | }
|
79 | 270 | equemene |
|
80 | 270 | equemene | __global__ void sillysum(float *dest, float *a, float *b)
|
81 | 270 | equemene | {
|
82 | 270 | equemene | const int i = blockIdx.x;
|
83 | 270 | equemene | dest[i] = MySillyFunction(a[i]) + MySillyFunction(b[i]);
|
84 | 270 | equemene | }
|
85 | 270 | equemene | """)
|
86 | 270 | equemene | Elapsed=time.time()-TimeIn |
87 | 270 | equemene | print("Definition of kernel : %.3f" % Elapsed)
|
88 | 270 | equemene | |
89 | 270 | equemene | TimeIn=time.time() |
90 | 270 | equemene | # sum = mod.get_function("sum")
|
91 | 270 | equemene | sillysum = mod.get_function("sillysum")
|
92 | 270 | equemene | Elapsed=time.time()-TimeIn |
93 | 270 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
94 | 270 | equemene | |
95 | 270 | equemene | TimeIn=time.time() |
96 | 270 | equemene | res_np = numpy.zeros_like(a_np) |
97 | 270 | equemene | Elapsed=time.time()-TimeIn |
98 | 270 | equemene | print("Allocation on Host for results : %.3f" % Elapsed)
|
99 | 270 | equemene | |
100 | 270 | equemene | TimeIn=time.time() |
101 | 270 | equemene | sillysum(drv.Out(res_np), drv.In(a_np), drv.In(b_np), |
102 | 270 | equemene | block=(1,1,1), grid=(a_np.size,1)) |
103 | 270 | equemene | Elapsed=time.time()-TimeIn |
104 | 270 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
105 | 270 | equemene | return(res_np)
|
106 | 270 | equemene | |
107 | 270 | equemene | # OpenCL complete operation
|
108 | 270 | equemene | def OpenCLAddition(a_np,b_np): |
109 | 270 | equemene | |
110 | 270 | equemene | # Context creation
|
111 | 270 | equemene | ctx = cl.create_some_context() |
112 | 270 | equemene | # Every process is stored in a queue
|
113 | 270 | equemene | queue = cl.CommandQueue(ctx) |
114 | 270 | equemene | |
115 | 270 | equemene | TimeIn=time.time() |
116 | 270 | equemene | # Copy from Host to Device using pointers
|
117 | 270 | equemene | mf = cl.mem_flags |
118 | 270 | equemene | a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
119 | 270 | equemene | b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
120 | 270 | equemene | Elapsed=time.time()-TimeIn |
121 | 270 | equemene | print("Copy from Host 2 Device : %.3f" % Elapsed)
|
122 | 270 | equemene | |
123 | 270 | equemene | TimeIn=time.time() |
124 | 270 | equemene | # Definition of kernel under OpenCL
|
125 | 270 | equemene | prg = cl.Program(ctx, """
|
126 | 270 | equemene | __kernel void sum(
|
127 | 270 | equemene | __global const float *a_g, __global const float *b_g, __global float *res_g)
|
128 | 270 | equemene | {
|
129 | 270 | equemene | int gid = get_global_id(0);
|
130 | 270 | equemene | res_g[gid] = a_g[gid] + b_g[gid];
|
131 | 270 | equemene | }
|
132 | 270 | equemene | """).build()
|
133 | 270 | equemene | Elapsed=time.time()-TimeIn |
134 | 270 | equemene | print("Building kernels : %.3f" % Elapsed)
|
135 | 270 | equemene | |
136 | 270 | equemene | TimeIn=time.time() |
137 | 270 | equemene | # Memory allocation on Device for result
|
138 | 270 | equemene | res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
139 | 270 | equemene | Elapsed=time.time()-TimeIn |
140 | 270 | equemene | print("Allocation on Device for results : %.3f" % Elapsed)
|
141 | 270 | equemene | |
142 | 270 | equemene | TimeIn=time.time() |
143 | 270 | equemene | # Synthesis of function "sum" inside Kernel Sources
|
144 | 270 | equemene | knl = prg.sum # Use this Kernel object for repeated calls
|
145 | 270 | equemene | Elapsed=time.time()-TimeIn |
146 | 270 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
147 | 270 | equemene | |
148 | 270 | equemene | TimeIn=time.time() |
149 | 270 | equemene | # Call of kernel previously defined
|
150 | 270 | equemene | knl(queue, a_np.shape, None, a_g, b_g, res_g)
|
151 | 270 | equemene | Elapsed=time.time()-TimeIn |
152 | 270 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
153 | 270 | equemene | |
154 | 270 | equemene | TimeIn=time.time() |
155 | 270 | equemene | # Creation of vector for result with same size as input vectors
|
156 | 270 | equemene | res_np = np.empty_like(a_np) |
157 | 270 | equemene | Elapsed=time.time()-TimeIn |
158 | 270 | equemene | print("Allocation on Host for results: %.3f" % Elapsed)
|
159 | 270 | equemene | |
160 | 270 | equemene | TimeIn=time.time() |
161 | 270 | equemene | # Copy from Device to Host
|
162 | 270 | equemene | cl.enqueue_copy(queue, res_np, res_g) |
163 | 270 | equemene | Elapsed=time.time()-TimeIn |
164 | 270 | equemene | print("Copy from Device 2 Host : %.3f" % Elapsed)
|
165 | 270 | equemene | |
166 | 270 | equemene | return(res_np)
|
167 | 270 | equemene | |
168 | 270 | equemene | # OpenCL complete operation
|
169 | 270 | equemene | def OpenCLSillyAddition(a_np,b_np): |
170 | 270 | equemene | |
171 | 270 | equemene | # Context creation
|
172 | 270 | equemene | ctx = cl.create_some_context() |
173 | 270 | equemene | # Every process is stored in a queue
|
174 | 270 | equemene | queue = cl.CommandQueue(ctx) |
175 | 270 | equemene | |
176 | 270 | equemene | TimeIn=time.time() |
177 | 270 | equemene | # Copy from Host to Device using pointers
|
178 | 270 | equemene | mf = cl.mem_flags |
179 | 270 | equemene | a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
180 | 270 | equemene | b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
181 | 270 | equemene | Elapsed=time.time()-TimeIn |
182 | 270 | equemene | print("Copy from Host 2 Device : %.3f" % Elapsed)
|
183 | 270 | equemene | |
184 | 270 | equemene | TimeIn=time.time() |
185 | 270 | equemene | # Definition of kernel under OpenCL
|
186 | 270 | equemene | prg = cl.Program(ctx, """
|
187 | 270 | equemene |
|
188 | 270 | equemene | float MySillyFunction(float x)
|
189 | 270 | equemene | {
|
190 | 270 | equemene | return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
|
191 | 270 | equemene | }
|
192 | 270 | equemene |
|
193 | 270 | equemene | __kernel void sillysum(
|
194 | 270 | equemene | __global const float *a_g, __global const float *b_g, __global float *res_g)
|
195 | 270 | equemene | {
|
196 | 270 | equemene | int gid = get_global_id(0);
|
197 | 270 | equemene | res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]);
|
198 | 270 | equemene | }
|
199 | 270 | equemene |
|
200 | 270 | equemene | __kernel void sum(
|
201 | 270 | equemene | __global const float *a_g, __global const float *b_g, __global float *res_g)
|
202 | 270 | equemene | {
|
203 | 270 | equemene | int gid = get_global_id(0);
|
204 | 270 | equemene | res_g[gid] = a_g[gid] + b_g[gid];
|
205 | 270 | equemene | }
|
206 | 270 | equemene | """).build()
|
207 | 270 | equemene | Elapsed=time.time()-TimeIn |
208 | 270 | equemene | print("Building kernels : %.3f" % Elapsed)
|
209 | 270 | equemene | |
210 | 270 | equemene | TimeIn=time.time() |
211 | 270 | equemene | # Memory allocation on Device for result
|
212 | 270 | equemene | res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
213 | 270 | equemene | Elapsed=time.time()-TimeIn |
214 | 270 | equemene | print("Allocation on Device for results : %.3f" % Elapsed)
|
215 | 270 | equemene | |
216 | 270 | equemene | TimeIn=time.time() |
217 | 270 | equemene | # Synthesis of function "sillysum" inside Kernel Sources
|
218 | 270 | equemene | knl = prg.sillysum # Use this Kernel object for repeated calls
|
219 | 270 | equemene | Elapsed=time.time()-TimeIn |
220 | 270 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
221 | 270 | equemene | |
222 | 270 | equemene | TimeIn=time.time() |
223 | 270 | equemene | # Call of kernel previously defined
|
224 | 270 | equemene | CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g)
|
225 | 270 | equemene | #
|
226 | 270 | equemene | CallCL.wait() |
227 | 270 | equemene | Elapsed=time.time()-TimeIn |
228 | 270 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
229 | 270 | equemene | |
230 | 270 | equemene | TimeIn=time.time() |
231 | 270 | equemene | # Creation of vector for result with same size as input vectors
|
232 | 270 | equemene | res_np = np.empty_like(a_np) |
233 | 270 | equemene | Elapsed=time.time()-TimeIn |
234 | 270 | equemene | print("Allocation on Host for results: %.3f" % Elapsed)
|
235 | 270 | equemene | |
236 | 270 | equemene | TimeIn=time.time() |
237 | 270 | equemene | # Copy from Device to Host
|
238 | 270 | equemene | cl.enqueue_copy(queue, res_np, res_g) |
239 | 270 | equemene | Elapsed=time.time()-TimeIn |
240 | 270 | equemene | print("Copy from Device 2 Host : %.3f" % Elapsed)
|
241 | 270 | equemene | |
242 | 270 | equemene | return(res_np)
|
243 | 270 | equemene | |
244 | 270 | equemene | import sys |
245 | 270 | equemene | import time |
246 | 270 | equemene | |
247 | 270 | equemene | if __name__=='__main__': |
248 | 270 | equemene | |
249 | 270 | equemene | # Size of input vectors definition based on stdin
|
250 | 270 | equemene | import sys |
251 | 270 | equemene | try:
|
252 | 270 | equemene | SIZE=int(sys.argv[1]) |
253 | 270 | equemene | print("Size of vectors set to %i" % SIZE)
|
254 | 270 | equemene | except:
|
255 | 270 | equemene | SIZE=50000
|
256 | 270 | equemene | print("Size of vectors set to default size %i" % SIZE)
|
257 | 270 | equemene | |
258 | 270 | equemene | # a_np = np.random.rand(SIZE).astype(np.float32)
|
259 | 270 | equemene | # b_np = np.random.rand(SIZE).astype(np.float32)
|
260 | 270 | equemene | |
261 | 270 | equemene | a_np = np.ones(SIZE).astype(np.float32) |
262 | 270 | equemene | b_np = np.ones(SIZE).astype(np.float32) |
263 | 270 | equemene | |
264 | 270 | equemene | # Native & Naive Implementation
|
265 | 270 | equemene | print("Performing naive implementation")
|
266 | 270 | equemene | TimeIn=time.time() |
267 | 270 | equemene | c_np,d_np=MyDFT(a_np,b_np) |
268 | 270 | equemene | NativeElapsed=time.time()-TimeIn |
269 | 270 | equemene | NativeRate=int(SIZE/NativeElapsed)
|
270 | 270 | equemene | print("NativeRate: %i" % NativeRate)
|
271 | 270 | equemene | print(c_np,d_np) |
272 | 270 | equemene | |
273 | 270 | equemene | # Native & Numpy Implementation
|
274 | 270 | equemene | print("Performing Numpy implementation")
|
275 | 270 | equemene | TimeIn=time.time() |
276 | 270 | equemene | e_np,f_np=NumpyDFT(a_np,b_np) |
277 | 270 | equemene | NumpyElapsed=time.time()-TimeIn |
278 | 270 | equemene | NumpyRate=int(SIZE/NumpyElapsed)
|
279 | 270 | equemene | print("NumpyRate: %i" % NumpyRate)
|
280 | 270 | equemene | print(e_np,f_np) |
281 | 270 | equemene | |
282 | 270 | equemene | print(np.linalg.norm(c_np-e_np)) |
283 | 270 | equemene | print(np.linalg.norm(d_np-f_np)) |
284 | 270 | equemene | |
285 | 270 | equemene | # # OpenCL Implementation
|
286 | 270 | equemene | # TimeIn=time.time()
|
287 | 270 | equemene | # # res_cl=OpenCLAddition(a_np,b_np)
|
288 | 270 | equemene | # res_cl=OpenCLSillyAddition(a_np,b_np)
|
289 | 270 | equemene | # OpenCLElapsed=time.time()-TimeIn
|
290 | 270 | equemene | # OpenCLRate=int(SIZE/OpenCLElapsed)
|
291 | 270 | equemene | # print("OpenCLRate: %i" % OpenCLRate)
|
292 | 270 | equemene | |
293 | 270 | equemene | # # CUDA Implementation
|
294 | 270 | equemene | # TimeIn=time.time()
|
295 | 270 | equemene | # # res_cuda=CUDAAddition(a_np,b_np)
|
296 | 270 | equemene | # res_cuda=CUDASillyAddition(a_np,b_np)
|
297 | 270 | equemene | # CUDAElapsed=time.time()-TimeIn
|
298 | 270 | equemene | # CUDARate=int(SIZE/CUDAElapsed)
|
299 | 270 | equemene | # print("CUDARate: %i" % CUDARate)
|
300 | 270 | equemene | |
301 | 270 | equemene | # print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate))
|
302 | 270 | equemene | # print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate))
|
303 | 270 | equemene | |
304 | 270 | equemene | # # Check on OpenCL with Numpy:
|
305 | 270 | equemene | # print(res_cl - res_np)
|
306 | 270 | equemene | # print(np.linalg.norm(res_cl - res_np))
|
307 | 270 | equemene | # try:
|
308 | 270 | equemene | # assert np.allclose(res_np, res_cl)
|
309 | 270 | equemene | # except:
|
310 | 270 | equemene | # print("Results between Native & OpenCL seem to be too different!")
|
311 | 270 | equemene | |
312 | 270 | equemene | # # Check on CUDA with Numpy:
|
313 | 270 | equemene | # print(res_cuda - res_np)
|
314 | 270 | equemene | # print(np.linalg.norm(res_cuda - res_np))
|
315 | 270 | equemene | # try:
|
316 | 270 | equemene | # assert np.allclose(res_np, res_cuda)
|
317 | 270 | equemene | # except:
|
318 | 270 | equemene | # print("Results between Native & CUDA seem to be too different!")
|
319 | 270 | equemene |