Statistiques
| Révision :

root / ETSN / MyDFT_2.py @ 270

Historique | Voir | Annoter | Télécharger (9,59 ko)

1 270 equemene
#!/usr/bin/env python3
2 270 equemene
3 270 equemene
import numpy as np
4 270 equemene
import pyopencl as cl
5 270 equemene
6 270 equemene
# piling 16 arithmetical functions
7 270 equemene
def MySillyFunction(x):
8 270 equemene
    return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2))
9 270 equemene
10 270 equemene
# Native Operation under Numpy (for prototyping & tests
11 270 equemene
def NativeAddition(a_np,b_np):
12 270 equemene
    return(a_np+b_np)
13 270 equemene
14 270 equemene
# Native Operation with MySillyFunction under Numpy (for prototyping & tests
15 270 equemene
def NativeSillyAddition(a_np,b_np):
16 270 equemene
    return(MySillyFunction(a_np)+MySillyFunction(b_np))
17 270 equemene
18 270 equemene
# Naive Discrete Fourier Transform
19 270 equemene
def MyDFT(x,y):
20 270 equemene
    from numpy import pi,cos,sin
21 270 equemene
    size=x.shape[0]
22 270 equemene
    X=np.zeros(size).astype(np.float32)
23 270 equemene
    Y=np.zeros(size).astype(np.float32)
24 270 equemene
    for i in range(size):
25 270 equemene
        for j in range(size):
26 270 equemene
            X[i]=X[i]+x[j]*cos(2.*pi*i*j/size)-y[j]*sin(2.*pi*i*j/size)
27 270 equemene
            Y[i]=Y[i]+x[j]*sin(2.*pi*i*j/size)+y[j]*cos(2.*pi*i*j/size)
28 270 equemene
    return(X,Y)
29 270 equemene
30 270 equemene
# Numpy Discrete Fourier Transform
31 270 equemene
def NumpyDFT(x,y):
32 270 equemene
    from numpy import pi,cos,sin
33 270 equemene
    size=x.shape[0]
34 270 equemene
    X=np.zeros(size).astype(np.float32)
35 270 equemene
    Y=np.zeros(size).astype(np.float32)
36 270 equemene
    nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
37 270 equemene
    for i in range(size):
38 270 equemene
        X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y)))
39 270 equemene
        Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y)))
40 270 equemene
    return(X,Y)
41 270 equemene
42 270 equemene
# CUDA complete operation
43 270 equemene
def CUDAAddition(a_np,b_np):
44 270 equemene
    import pycuda.autoinit
45 270 equemene
    import pycuda.driver as drv
46 270 equemene
    import numpy
47 270 equemene
48 270 equemene
    from pycuda.compiler import SourceModule
49 270 equemene
    mod = SourceModule("""
50 270 equemene
    __global__ void sum(float *dest, float *a, float *b)
51 270 equemene
{
52 270 equemene
  // const int i = threadIdx.x;
53 270 equemene
  const int i = blockIdx.x;
54 270 equemene
  dest[i] = a[i] + b[i];
55 270 equemene
}
56 270 equemene
""")
57 270 equemene
58 270 equemene
    # sum = mod.get_function("sum")
59 270 equemene
    sum = mod.get_function("sum")
60 270 equemene
61 270 equemene
    res_np = numpy.zeros_like(a_np)
62 270 equemene
    sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
63 270 equemene
        block=(1,1,1), grid=(a_np.size,1))
64 270 equemene
    return(res_np)
65 270 equemene
66 270 equemene
# CUDA Silly complete operation
67 270 equemene
def CUDASillyAddition(a_np,b_np):
68 270 equemene
    import pycuda.autoinit
69 270 equemene
    import pycuda.driver as drv
70 270 equemene
    import numpy
71 270 equemene
72 270 equemene
    from pycuda.compiler import SourceModule
73 270 equemene
    TimeIn=time.time()
74 270 equemene
    mod = SourceModule("""
75 270 equemene
__device__ float MySillyFunction(float x)
76 270 equemene
{
77 270 equemene
    return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
78 270 equemene
}
79 270 equemene

80 270 equemene
__global__ void sillysum(float *dest, float *a, float *b)
81 270 equemene
{
82 270 equemene
  const int i = blockIdx.x;
83 270 equemene
  dest[i] = MySillyFunction(a[i]) + MySillyFunction(b[i]);
84 270 equemene
}
85 270 equemene
""")
86 270 equemene
    Elapsed=time.time()-TimeIn
87 270 equemene
    print("Definition of kernel : %.3f" % Elapsed)
88 270 equemene
89 270 equemene
    TimeIn=time.time()
90 270 equemene
    # sum = mod.get_function("sum")
91 270 equemene
    sillysum = mod.get_function("sillysum")
92 270 equemene
    Elapsed=time.time()-TimeIn
93 270 equemene
    print("Synthesis of kernel : %.3f" % Elapsed)
94 270 equemene
95 270 equemene
    TimeIn=time.time()
96 270 equemene
    res_np = numpy.zeros_like(a_np)
97 270 equemene
    Elapsed=time.time()-TimeIn
98 270 equemene
    print("Allocation on Host for results : %.3f" % Elapsed)
99 270 equemene
100 270 equemene
    TimeIn=time.time()
101 270 equemene
    sillysum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
102 270 equemene
             block=(1,1,1), grid=(a_np.size,1))
103 270 equemene
    Elapsed=time.time()-TimeIn
104 270 equemene
    print("Execution of kernel : %.3f" % Elapsed)
105 270 equemene
    return(res_np)
106 270 equemene
107 270 equemene
# OpenCL complete operation
108 270 equemene
def OpenCLAddition(a_np,b_np):
109 270 equemene
110 270 equemene
    # Context creation
111 270 equemene
    ctx = cl.create_some_context()
112 270 equemene
    # Every process is stored in a queue
113 270 equemene
    queue = cl.CommandQueue(ctx)
114 270 equemene
115 270 equemene
    TimeIn=time.time()
116 270 equemene
    # Copy from Host to Device using pointers
117 270 equemene
    mf = cl.mem_flags
118 270 equemene
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
119 270 equemene
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
120 270 equemene
    Elapsed=time.time()-TimeIn
121 270 equemene
    print("Copy from Host 2 Device : %.3f" % Elapsed)
122 270 equemene
123 270 equemene
    TimeIn=time.time()
124 270 equemene
    # Definition of kernel under OpenCL
125 270 equemene
    prg = cl.Program(ctx, """
126 270 equemene
__kernel void sum(
127 270 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
128 270 equemene
{
129 270 equemene
  int gid = get_global_id(0);
130 270 equemene
  res_g[gid] = a_g[gid] + b_g[gid];
131 270 equemene
}
132 270 equemene
""").build()
133 270 equemene
    Elapsed=time.time()-TimeIn
134 270 equemene
    print("Building kernels : %.3f" % Elapsed)
135 270 equemene
136 270 equemene
    TimeIn=time.time()
137 270 equemene
    # Memory allocation on Device for result
138 270 equemene
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
139 270 equemene
    Elapsed=time.time()-TimeIn
140 270 equemene
    print("Allocation on Device for results : %.3f" % Elapsed)
141 270 equemene
142 270 equemene
    TimeIn=time.time()
143 270 equemene
    # Synthesis of function "sum" inside Kernel Sources
144 270 equemene
    knl = prg.sum  # Use this Kernel object for repeated calls
145 270 equemene
    Elapsed=time.time()-TimeIn
146 270 equemene
    print("Synthesis of kernel : %.3f" % Elapsed)
147 270 equemene
148 270 equemene
    TimeIn=time.time()
149 270 equemene
    # Call of kernel previously defined
150 270 equemene
    knl(queue, a_np.shape, None, a_g, b_g, res_g)
151 270 equemene
    Elapsed=time.time()-TimeIn
152 270 equemene
    print("Execution of kernel : %.3f" % Elapsed)
153 270 equemene
154 270 equemene
    TimeIn=time.time()
155 270 equemene
    # Creation of vector for result with same size as input vectors
156 270 equemene
    res_np = np.empty_like(a_np)
157 270 equemene
    Elapsed=time.time()-TimeIn
158 270 equemene
    print("Allocation on Host for results: %.3f" % Elapsed)
159 270 equemene
160 270 equemene
    TimeIn=time.time()
161 270 equemene
    # Copy from Device to Host
162 270 equemene
    cl.enqueue_copy(queue, res_np, res_g)
163 270 equemene
    Elapsed=time.time()-TimeIn
164 270 equemene
    print("Copy from Device 2 Host : %.3f" % Elapsed)
165 270 equemene
166 270 equemene
    return(res_np)
167 270 equemene
168 270 equemene
# OpenCL complete operation
169 270 equemene
def OpenCLSillyAddition(a_np,b_np):
170 270 equemene
171 270 equemene
    # Context creation
172 270 equemene
    ctx = cl.create_some_context()
173 270 equemene
    # Every process is stored in a queue
174 270 equemene
    queue = cl.CommandQueue(ctx)
175 270 equemene
176 270 equemene
    TimeIn=time.time()
177 270 equemene
    # Copy from Host to Device using pointers
178 270 equemene
    mf = cl.mem_flags
179 270 equemene
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
180 270 equemene
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
181 270 equemene
    Elapsed=time.time()-TimeIn
182 270 equemene
    print("Copy from Host 2 Device : %.3f" % Elapsed)
183 270 equemene
184 270 equemene
    TimeIn=time.time()
185 270 equemene
    # Definition of kernel under OpenCL
186 270 equemene
    prg = cl.Program(ctx, """
187 270 equemene

188 270 equemene
float MySillyFunction(float x)
189 270 equemene
{
190 270 equemene
    return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
191 270 equemene
}
192 270 equemene

193 270 equemene
__kernel void sillysum(
194 270 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
195 270 equemene
{
196 270 equemene
  int gid = get_global_id(0);
197 270 equemene
  res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]);
198 270 equemene
}
199 270 equemene

200 270 equemene
__kernel void sum(
201 270 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
202 270 equemene
{
203 270 equemene
  int gid = get_global_id(0);
204 270 equemene
  res_g[gid] = a_g[gid] + b_g[gid];
205 270 equemene
}
206 270 equemene
""").build()
207 270 equemene
    Elapsed=time.time()-TimeIn
208 270 equemene
    print("Building kernels : %.3f" % Elapsed)
209 270 equemene
210 270 equemene
    TimeIn=time.time()
211 270 equemene
    # Memory allocation on Device for result
212 270 equemene
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
213 270 equemene
    Elapsed=time.time()-TimeIn
214 270 equemene
    print("Allocation on Device for results : %.3f" % Elapsed)
215 270 equemene
216 270 equemene
    TimeIn=time.time()
217 270 equemene
    # Synthesis of function "sillysum" inside Kernel Sources
218 270 equemene
    knl = prg.sillysum  # Use this Kernel object for repeated calls
219 270 equemene
    Elapsed=time.time()-TimeIn
220 270 equemene
    print("Synthesis of kernel : %.3f" % Elapsed)
221 270 equemene
222 270 equemene
    TimeIn=time.time()
223 270 equemene
    # Call of kernel previously defined
224 270 equemene
    CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g)
225 270 equemene
    #
226 270 equemene
    CallCL.wait()
227 270 equemene
    Elapsed=time.time()-TimeIn
228 270 equemene
    print("Execution of kernel : %.3f" % Elapsed)
229 270 equemene
230 270 equemene
    TimeIn=time.time()
231 270 equemene
    # Creation of vector for result with same size as input vectors
232 270 equemene
    res_np = np.empty_like(a_np)
233 270 equemene
    Elapsed=time.time()-TimeIn
234 270 equemene
    print("Allocation on Host for results: %.3f" % Elapsed)
235 270 equemene
236 270 equemene
    TimeIn=time.time()
237 270 equemene
    # Copy from Device to Host
238 270 equemene
    cl.enqueue_copy(queue, res_np, res_g)
239 270 equemene
    Elapsed=time.time()-TimeIn
240 270 equemene
    print("Copy from Device 2 Host : %.3f" % Elapsed)
241 270 equemene
242 270 equemene
    return(res_np)
243 270 equemene
244 270 equemene
import sys
245 270 equemene
import time
246 270 equemene
247 270 equemene
if __name__=='__main__':
248 270 equemene
249 270 equemene
    # Size of input vectors definition based on stdin
250 270 equemene
    import sys
251 270 equemene
    try:
252 270 equemene
        SIZE=int(sys.argv[1])
253 270 equemene
        print("Size of vectors set to %i" % SIZE)
254 270 equemene
    except:
255 270 equemene
        SIZE=50000
256 270 equemene
        print("Size of vectors set to default size %i" % SIZE)
257 270 equemene
258 270 equemene
    # a_np = np.random.rand(SIZE).astype(np.float32)
259 270 equemene
    # b_np = np.random.rand(SIZE).astype(np.float32)
260 270 equemene
261 270 equemene
    a_np = np.ones(SIZE).astype(np.float32)
262 270 equemene
    b_np = np.ones(SIZE).astype(np.float32)
263 270 equemene
264 270 equemene
    # Native & Naive Implementation
265 270 equemene
    print("Performing naive implementation")
266 270 equemene
    TimeIn=time.time()
267 270 equemene
    c_np,d_np=MyDFT(a_np,b_np)
268 270 equemene
    NativeElapsed=time.time()-TimeIn
269 270 equemene
    NativeRate=int(SIZE/NativeElapsed)
270 270 equemene
    print("NativeRate: %i" % NativeRate)
271 270 equemene
    print(c_np,d_np)
272 270 equemene
273 270 equemene
    # Native & Numpy Implementation
274 270 equemene
    print("Performing Numpy implementation")
275 270 equemene
    TimeIn=time.time()
276 270 equemene
    e_np,f_np=NumpyDFT(a_np,b_np)
277 270 equemene
    NumpyElapsed=time.time()-TimeIn
278 270 equemene
    NumpyRate=int(SIZE/NumpyElapsed)
279 270 equemene
    print("NumpyRate: %i" % NumpyRate)
280 270 equemene
    print(e_np,f_np)
281 270 equemene
282 270 equemene
    print(np.linalg.norm(c_np-e_np))
283 270 equemene
    print(np.linalg.norm(d_np-f_np))
284 270 equemene
285 270 equemene
   #  # OpenCL Implementation
286 270 equemene
   #  TimeIn=time.time()
287 270 equemene
   #  # res_cl=OpenCLAddition(a_np,b_np)
288 270 equemene
   #  res_cl=OpenCLSillyAddition(a_np,b_np)
289 270 equemene
   #  OpenCLElapsed=time.time()-TimeIn
290 270 equemene
   #  OpenCLRate=int(SIZE/OpenCLElapsed)
291 270 equemene
   #  print("OpenCLRate: %i" % OpenCLRate)
292 270 equemene
293 270 equemene
   #  # CUDA Implementation
294 270 equemene
   #  TimeIn=time.time()
295 270 equemene
   #  # res_cuda=CUDAAddition(a_np,b_np)
296 270 equemene
   #  res_cuda=CUDASillyAddition(a_np,b_np)
297 270 equemene
   #  CUDAElapsed=time.time()-TimeIn
298 270 equemene
   #  CUDARate=int(SIZE/CUDAElapsed)
299 270 equemene
   #  print("CUDARate: %i" % CUDARate)
300 270 equemene
301 270 equemene
   #  print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate))
302 270 equemene
   #  print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate))
303 270 equemene
304 270 equemene
   # # Check on OpenCL with Numpy:
305 270 equemene
   #  print(res_cl - res_np)
306 270 equemene
   #  print(np.linalg.norm(res_cl - res_np))
307 270 equemene
   #  try:
308 270 equemene
   #      assert np.allclose(res_np, res_cl)
309 270 equemene
   #  except:
310 270 equemene
   #      print("Results between Native & OpenCL seem to be too different!")
311 270 equemene
312 270 equemene
   #  # Check on CUDA with Numpy:
313 270 equemene
   #  print(res_cuda - res_np)
314 270 equemene
   #  print(np.linalg.norm(res_cuda - res_np))
315 270 equemene
   #  try:
316 270 equemene
   #      assert np.allclose(res_np, res_cuda)
317 270 equemene
   #  except:
318 270 equemene
   #      print("Results between Native & CUDA seem to be too different!")
319 270 equemene