Révision 269
ETSN/MySteps_4.py (revision 269) | ||
---|---|---|
1 |
#!/usr/bin/env python3 |
|
2 |
|
|
3 |
import numpy as np |
|
4 |
import pyopencl as cl |
|
5 |
|
|
6 |
# piling 16 arithmetical functions |
|
7 |
def MySillyFunction(x): |
|
8 |
return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2)) |
|
9 |
|
|
10 |
# Native Operation under Numpy (for prototyping & tests |
|
11 |
def NativeAddition(a_np,b_np): |
|
12 |
return(a_np+b_np) |
|
13 |
|
|
14 |
# Native Operation with MySillyFunction under Numpy (for prototyping & tests |
|
15 |
def NativeSillyAddition(a_np,b_np): |
|
16 |
return(MySillyFunction(a_np)+MySillyFunction(b_np)) |
|
17 |
|
|
18 |
# CUDA complete operation |
|
19 |
def CUDAAddition(a_np,b_np): |
|
20 |
import pycuda.autoinit |
|
21 |
import pycuda.driver as drv |
|
22 |
import numpy |
|
23 |
|
|
24 |
from pycuda.compiler import SourceModule |
|
25 |
mod = SourceModule(""" |
|
26 |
__global__ void sum(float *dest, float *a, float *b) |
|
27 |
{ |
|
28 |
// const int i = threadIdx.x; |
|
29 |
const int i = blockIdx.x; |
|
30 |
dest[i] = a[i] + b[i]; |
|
31 |
} |
|
32 |
""") |
|
33 |
|
|
34 |
sum = mod.get_function("sum") |
|
35 |
|
|
36 |
res_np = numpy.zeros_like(a_np) |
|
37 |
sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np), |
|
38 |
block=(1,1,1), grid=(a_np.size,1)) |
|
39 |
return(res_np) |
|
40 |
|
|
41 |
# OpenCL complete operation |
|
42 |
def OpenCLAddition(a_np,b_np): |
|
43 |
|
|
44 |
# Context creation |
|
45 |
ctx = cl.create_some_context() |
|
46 |
# Every process is stored in a queue |
|
47 |
queue = cl.CommandQueue(ctx) |
|
48 |
|
|
49 |
TimeIn=time.time() |
|
50 |
# Copy from Host to Device using pointers |
|
51 |
mf = cl.mem_flags |
|
52 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
|
53 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
|
54 |
Elapsed=time.time()-TimeIn |
|
55 |
print("Copy from Host 2 Device : %.3f" % Elapsed) |
|
56 |
|
|
57 |
TimeIn=time.time() |
|
58 |
# Definition of kernel under OpenCL |
|
59 |
prg = cl.Program(ctx, """ |
|
60 |
__kernel void sum( |
|
61 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
62 |
{ |
|
63 |
int gid = get_global_id(0); |
|
64 |
res_g[gid] = a_g[gid] + b_g[gid]; |
|
65 |
} |
|
66 |
""").build() |
|
67 |
Elapsed=time.time()-TimeIn |
|
68 |
print("Building kernels : %.3f" % Elapsed) |
|
69 |
|
|
70 |
TimeIn=time.time() |
|
71 |
# Memory allocation on Device for result |
|
72 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
|
73 |
Elapsed=time.time()-TimeIn |
|
74 |
print("Allocation on Device for results : %.3f" % Elapsed) |
|
75 |
|
|
76 |
TimeIn=time.time() |
|
77 |
# Synthesis of function "sum" inside Kernel Sources |
|
78 |
knl = prg.sum # Use this Kernel object for repeated calls |
|
79 |
Elapsed=time.time()-TimeIn |
|
80 |
print("Synthesis of kernel : %.3f" % Elapsed) |
|
81 |
|
|
82 |
TimeIn=time.time() |
|
83 |
# Call of kernel previously defined |
|
84 |
knl(queue, a_np.shape, None, a_g, b_g, res_g) |
|
85 |
Elapsed=time.time()-TimeIn |
|
86 |
print("Execution of kernel : %.3f" % Elapsed) |
|
87 |
|
|
88 |
TimeIn=time.time() |
|
89 |
# Creation of vector for result with same size as input vectors |
|
90 |
res_np = np.empty_like(a_np) |
|
91 |
Elapsed=time.time()-TimeIn |
|
92 |
print("Allocation on Host for results: %.3f" % Elapsed) |
|
93 |
|
|
94 |
TimeIn=time.time() |
|
95 |
# Copy from Device to Host |
|
96 |
cl.enqueue_copy(queue, res_np, res_g) |
|
97 |
Elapsed=time.time()-TimeIn |
|
98 |
print("Copy from Device 2 Host : %.3f" % Elapsed) |
|
99 |
|
|
100 |
return(res_np) |
|
101 |
|
|
102 |
# OpenCL complete operation |
|
103 |
def OpenCLSillyAddition(a_np,b_np): |
|
104 |
|
|
105 |
# Context creation |
|
106 |
ctx = cl.create_some_context() |
|
107 |
# Every process is stored in a queue |
|
108 |
queue = cl.CommandQueue(ctx) |
|
109 |
|
|
110 |
TimeIn=time.time() |
|
111 |
# Copy from Host to Device using pointers |
|
112 |
mf = cl.mem_flags |
|
113 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
|
114 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
|
115 |
Elapsed=time.time()-TimeIn |
|
116 |
print("Copy from Host 2 Device : %.3f" % Elapsed) |
|
117 |
|
|
118 |
TimeIn=time.time() |
|
119 |
# Definition of kernel under OpenCL |
|
120 |
prg = cl.Program(ctx, """ |
|
121 |
|
|
122 |
float MySillyFunction(float x) |
|
123 |
{ |
|
124 |
return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2)); |
|
125 |
} |
|
126 |
|
|
127 |
__kernel void sillysum( |
|
128 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
129 |
{ |
|
130 |
int gid = get_global_id(0); |
|
131 |
res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]); |
|
132 |
} |
|
133 |
|
|
134 |
__kernel void sum( |
|
135 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
136 |
{ |
|
137 |
int gid = get_global_id(0); |
|
138 |
res_g[gid] = a_g[gid] + b_g[gid]; |
|
139 |
} |
|
140 |
""").build() |
|
141 |
Elapsed=time.time()-TimeIn |
|
142 |
print("Building kernels : %.3f" % Elapsed) |
|
143 |
|
|
144 |
TimeIn=time.time() |
|
145 |
# Memory allocation on Device for result |
|
146 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
|
147 |
Elapsed=time.time()-TimeIn |
|
148 |
print("Allocation on Device for results : %.3f" % Elapsed) |
|
149 |
|
|
150 |
TimeIn=time.time() |
|
151 |
# Synthesis of function "sillysum" inside Kernel Sources |
|
152 |
knl = prg.sillysum # Use this Kernel object for repeated calls |
|
153 |
Elapsed=time.time()-TimeIn |
|
154 |
print("Synthesis of kernel : %.3f" % Elapsed) |
|
155 |
|
|
156 |
TimeIn=time.time() |
|
157 |
# Call of kernel previously defined |
|
158 |
CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g) |
|
159 |
# |
|
160 |
CallCL.wait() |
|
161 |
Elapsed=time.time()-TimeIn |
|
162 |
print("Execution of kernel : %.3f" % Elapsed) |
|
163 |
|
|
164 |
TimeIn=time.time() |
|
165 |
# Creation of vector for result with same size as input vectors |
|
166 |
res_np = np.empty_like(a_np) |
|
167 |
Elapsed=time.time()-TimeIn |
|
168 |
print("Allocation on Host for results: %.3f" % Elapsed) |
|
169 |
|
|
170 |
TimeIn=time.time() |
|
171 |
# Copy from Device to Host |
|
172 |
cl.enqueue_copy(queue, res_np, res_g) |
|
173 |
Elapsed=time.time()-TimeIn |
|
174 |
print("Copy from Device 2 Host : %.3f" % Elapsed) |
|
175 |
|
|
176 |
return(res_np) |
|
177 |
|
|
178 |
import sys |
|
179 |
import time |
|
180 |
|
|
181 |
if __name__=='__main__': |
|
182 |
|
|
183 |
# Size of input vectors definition based on stdin |
|
184 |
import sys |
|
185 |
try: |
|
186 |
SIZE=int(sys.argv[1]) |
|
187 |
print("Size of vectors set to %i" % SIZE) |
|
188 |
except: |
|
189 |
SIZE=50000 |
|
190 |
print("Size of vectors set to default size %i" % SIZE) |
|
191 |
|
|
192 |
a_np = np.random.rand(SIZE).astype(np.float32) |
|
193 |
b_np = np.random.rand(SIZE).astype(np.float32) |
|
194 |
|
|
195 |
# Native Implementation |
|
196 |
TimeIn=time.time() |
|
197 |
# res_np=NativeSillyAddition(a_np,b_np) |
|
198 |
res_np=NativeAddition(a_np,b_np) |
|
199 |
NativeElapsed=time.time()-TimeIn |
|
200 |
NativeRate=int(SIZE/NativeElapsed) |
|
201 |
print("NativeRate: %i" % NativeRate) |
|
202 |
|
|
203 |
# OpenCL Implementation |
|
204 |
TimeIn=time.time() |
|
205 |
# res_cl=OpenCLSillyAddition(a_np,b_np) |
|
206 |
res_cl=OpenCLAddition(a_np,b_np) |
|
207 |
OpenCLElapsed=time.time()-TimeIn |
|
208 |
OpenCLRate=int(SIZE/OpenCLElapsed) |
|
209 |
print("OpenCLRate: %i" % OpenCLRate) |
|
210 |
|
|
211 |
# CUDA Implementation |
|
212 |
TimeIn=time.time() |
|
213 |
res_cuda=CUDAAddition(a_np,b_np) |
|
214 |
CUDAElapsed=time.time()-TimeIn |
|
215 |
CUDARate=int(SIZE/CUDAElapsed) |
|
216 |
print("CUDARate: %i" % CUDARate) |
|
217 |
|
|
218 |
print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate)) |
|
219 |
print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate)) |
|
220 |
|
|
221 |
# Check on OpenCL with Numpy: |
|
222 |
print(res_cl - res_np) |
|
223 |
print(np.linalg.norm(res_cl - res_np)) |
|
224 |
try: |
|
225 |
assert np.allclose(res_np, res_cl) |
|
226 |
except: |
|
227 |
print("Results between Native & OpenCL seem to be too different!") |
|
228 |
|
|
229 |
# Check on CUDA with Numpy: |
|
230 |
print(res_cuda - res_np) |
|
231 |
print(np.linalg.norm(res_cuda - res_np)) |
|
232 |
try: |
|
233 |
assert np.allclose(res_np, res_cuda) |
|
234 |
except: |
|
235 |
print("Results between Native & CUDA seem to be too different!") |
|
236 |
|
|
237 |
|
|
0 | 238 |
ETSN/MySteps_5.py (revision 269) | ||
---|---|---|
1 |
#!/usr/bin/env python3 |
|
2 |
|
|
3 |
import numpy as np |
|
4 |
import pyopencl as cl |
|
5 |
|
|
6 |
# piling 16 arithmetical functions |
|
7 |
def MySillyFunction(x): |
|
8 |
return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2)) |
|
9 |
|
|
10 |
# Native Operation under Numpy (for prototyping & tests |
|
11 |
def NativeAddition(a_np,b_np): |
|
12 |
return(a_np+b_np) |
|
13 |
|
|
14 |
# Native Operation with MySillyFunction under Numpy (for prototyping & tests |
|
15 |
def NativeSillyAddition(a_np,b_np): |
|
16 |
return(MySillyFunction(a_np)+MySillyFunction(b_np)) |
|
17 |
|
|
18 |
# CUDA complete operation |
|
19 |
def CUDAAddition(a_np,b_np): |
|
20 |
import pycuda.autoinit |
|
21 |
import pycuda.driver as drv |
|
22 |
import numpy |
|
23 |
|
|
24 |
from pycuda.compiler import SourceModule |
|
25 |
mod = SourceModule(""" |
|
26 |
__global__ void sum(float *dest, float *a, float *b) |
|
27 |
{ |
|
28 |
// const int i = threadIdx.x; |
|
29 |
const int i = blockIdx.x; |
|
30 |
dest[i] = a[i] + b[i]; |
|
31 |
} |
|
32 |
""") |
|
33 |
|
|
34 |
# sum = mod.get_function("sum") |
|
35 |
sum = mod.get_function("sum") |
|
36 |
|
|
37 |
res_np = numpy.zeros_like(a_np) |
|
38 |
sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np), |
|
39 |
block=(1,1,1), grid=(a_np.size,1)) |
|
40 |
return(res_np) |
|
41 |
|
|
42 |
# CUDA Silly complete operation |
|
43 |
def CUDASillyAddition(a_np,b_np): |
|
44 |
import pycuda.autoinit |
|
45 |
import pycuda.driver as drv |
|
46 |
import numpy |
|
47 |
|
|
48 |
from pycuda.compiler import SourceModule |
|
49 |
TimeIn=time.time() |
|
50 |
mod = SourceModule(""" |
|
51 |
__device__ float MySillyFunction(float x) |
|
52 |
{ |
|
53 |
return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2)); |
|
54 |
} |
|
55 |
|
|
56 |
__global__ void sillysum(float *dest, float *a, float *b) |
|
57 |
{ |
|
58 |
const int i = blockIdx.x; |
|
59 |
dest[i] = MySillyFunction(a[i]) + MySillyFunction(b[i]); |
|
60 |
} |
|
61 |
""") |
|
62 |
Elapsed=time.time()-TimeIn |
|
63 |
print("Definition of kernel : %.3f" % Elapsed) |
|
64 |
|
|
65 |
TimeIn=time.time() |
|
66 |
# sum = mod.get_function("sum") |
|
67 |
sillysum = mod.get_function("sillysum") |
|
68 |
Elapsed=time.time()-TimeIn |
|
69 |
print("Synthesis of kernel : %.3f" % Elapsed) |
|
70 |
|
|
71 |
TimeIn=time.time() |
|
72 |
res_np = numpy.zeros_like(a_np) |
|
73 |
Elapsed=time.time()-TimeIn |
|
74 |
print("Allocation on Host for results : %.3f" % Elapsed) |
|
75 |
|
|
76 |
TimeIn=time.time() |
|
77 |
sillysum(drv.Out(res_np), drv.In(a_np), drv.In(b_np), |
|
78 |
block=(1,1,1), grid=(a_np.size,1)) |
|
79 |
Elapsed=time.time()-TimeIn |
|
80 |
print("Execution of kernel : %.3f" % Elapsed) |
|
81 |
return(res_np) |
|
82 |
|
|
83 |
# OpenCL complete operation |
|
84 |
def OpenCLAddition(a_np,b_np): |
|
85 |
|
|
86 |
# Context creation |
|
87 |
ctx = cl.create_some_context() |
|
88 |
# Every process is stored in a queue |
|
89 |
queue = cl.CommandQueue(ctx) |
|
90 |
|
|
91 |
TimeIn=time.time() |
|
92 |
# Copy from Host to Device using pointers |
|
93 |
mf = cl.mem_flags |
|
94 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
|
95 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
|
96 |
Elapsed=time.time()-TimeIn |
|
97 |
print("Copy from Host 2 Device : %.3f" % Elapsed) |
|
98 |
|
|
99 |
TimeIn=time.time() |
|
100 |
# Definition of kernel under OpenCL |
|
101 |
prg = cl.Program(ctx, """ |
|
102 |
__kernel void sum( |
|
103 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
104 |
{ |
|
105 |
int gid = get_global_id(0); |
|
106 |
res_g[gid] = a_g[gid] + b_g[gid]; |
|
107 |
} |
|
108 |
""").build() |
|
109 |
Elapsed=time.time()-TimeIn |
|
110 |
print("Building kernels : %.3f" % Elapsed) |
|
111 |
|
|
112 |
TimeIn=time.time() |
|
113 |
# Memory allocation on Device for result |
|
114 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
|
115 |
Elapsed=time.time()-TimeIn |
|
116 |
print("Allocation on Device for results : %.3f" % Elapsed) |
|
117 |
|
|
118 |
TimeIn=time.time() |
|
119 |
# Synthesis of function "sum" inside Kernel Sources |
|
120 |
knl = prg.sum # Use this Kernel object for repeated calls |
|
121 |
Elapsed=time.time()-TimeIn |
|
122 |
print("Synthesis of kernel : %.3f" % Elapsed) |
|
123 |
|
|
124 |
TimeIn=time.time() |
|
125 |
# Call of kernel previously defined |
|
126 |
knl(queue, a_np.shape, None, a_g, b_g, res_g) |
|
127 |
Elapsed=time.time()-TimeIn |
|
128 |
print("Execution of kernel : %.3f" % Elapsed) |
|
129 |
|
|
130 |
TimeIn=time.time() |
|
131 |
# Creation of vector for result with same size as input vectors |
|
132 |
res_np = np.empty_like(a_np) |
|
133 |
Elapsed=time.time()-TimeIn |
|
134 |
print("Allocation on Host for results: %.3f" % Elapsed) |
|
135 |
|
|
136 |
TimeIn=time.time() |
|
137 |
# Copy from Device to Host |
|
138 |
cl.enqueue_copy(queue, res_np, res_g) |
|
139 |
Elapsed=time.time()-TimeIn |
|
140 |
print("Copy from Device 2 Host : %.3f" % Elapsed) |
|
141 |
|
|
142 |
return(res_np) |
|
143 |
|
|
144 |
# OpenCL complete operation |
|
145 |
def OpenCLSillyAddition(a_np,b_np): |
|
146 |
|
|
147 |
# Context creation |
|
148 |
ctx = cl.create_some_context() |
|
149 |
# Every process is stored in a queue |
|
150 |
queue = cl.CommandQueue(ctx) |
|
151 |
|
|
152 |
TimeIn=time.time() |
|
153 |
# Copy from Host to Device using pointers |
|
154 |
mf = cl.mem_flags |
|
155 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
|
156 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
|
157 |
Elapsed=time.time()-TimeIn |
|
158 |
print("Copy from Host 2 Device : %.3f" % Elapsed) |
|
159 |
|
|
160 |
TimeIn=time.time() |
|
161 |
# Definition of kernel under OpenCL |
|
162 |
prg = cl.Program(ctx, """ |
|
163 |
|
|
164 |
float MySillyFunction(float x) |
|
165 |
{ |
|
166 |
return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2)); |
|
167 |
} |
|
168 |
|
|
169 |
__kernel void sillysum( |
|
170 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
171 |
{ |
|
172 |
int gid = get_global_id(0); |
|
173 |
res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]); |
|
174 |
} |
|
175 |
|
|
176 |
__kernel void sum( |
|
177 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
178 |
{ |
|
179 |
int gid = get_global_id(0); |
|
180 |
res_g[gid] = a_g[gid] + b_g[gid]; |
|
181 |
} |
|
182 |
""").build() |
|
183 |
Elapsed=time.time()-TimeIn |
|
184 |
print("Building kernels : %.3f" % Elapsed) |
|
185 |
|
|
186 |
TimeIn=time.time() |
|
187 |
# Memory allocation on Device for result |
|
188 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
|
189 |
Elapsed=time.time()-TimeIn |
|
190 |
print("Allocation on Device for results : %.3f" % Elapsed) |
|
191 |
|
|
192 |
TimeIn=time.time() |
|
193 |
# Synthesis of function "sillysum" inside Kernel Sources |
|
194 |
knl = prg.sillysum # Use this Kernel object for repeated calls |
|
195 |
Elapsed=time.time()-TimeIn |
|
196 |
print("Synthesis of kernel : %.3f" % Elapsed) |
|
197 |
|
|
198 |
TimeIn=time.time() |
|
199 |
# Call of kernel previously defined |
|
200 |
CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g) |
|
201 |
# |
|
202 |
CallCL.wait() |
|
203 |
Elapsed=time.time()-TimeIn |
|
204 |
print("Execution of kernel : %.3f" % Elapsed) |
|
205 |
|
|
206 |
TimeIn=time.time() |
|
207 |
# Creation of vector for result with same size as input vectors |
|
208 |
res_np = np.empty_like(a_np) |
|
209 |
Elapsed=time.time()-TimeIn |
|
210 |
print("Allocation on Host for results: %.3f" % Elapsed) |
|
211 |
|
|
212 |
TimeIn=time.time() |
|
213 |
# Copy from Device to Host |
|
214 |
cl.enqueue_copy(queue, res_np, res_g) |
|
215 |
Elapsed=time.time()-TimeIn |
|
216 |
print("Copy from Device 2 Host : %.3f" % Elapsed) |
|
217 |
|
|
218 |
return(res_np) |
|
219 |
|
|
220 |
import sys |
|
221 |
import time |
|
222 |
|
|
223 |
if __name__=='__main__': |
|
224 |
|
|
225 |
# Size of input vectors definition based on stdin |
|
226 |
import sys |
|
227 |
try: |
|
228 |
SIZE=int(sys.argv[1]) |
|
229 |
print("Size of vectors set to %i" % SIZE) |
|
230 |
except: |
|
231 |
SIZE=50000 |
|
232 |
print("Size of vectors set to default size %i" % SIZE) |
|
233 |
|
|
234 |
a_np = np.random.rand(SIZE).astype(np.float32) |
|
235 |
b_np = np.random.rand(SIZE).astype(np.float32) |
|
236 |
|
|
237 |
# Native Implementation |
|
238 |
TimeIn=time.time() |
|
239 |
# res_np=NativeAddition(a_np,b_np) |
|
240 |
res_np=NativeSillyAddition(a_np,b_np) |
|
241 |
NativeElapsed=time.time()-TimeIn |
|
242 |
NativeRate=int(SIZE/NativeElapsed) |
|
243 |
print("NativeRate: %i" % NativeRate) |
|
244 |
|
|
245 |
# OpenCL Implementation |
|
246 |
TimeIn=time.time() |
|
247 |
# res_cl=OpenCLAddition(a_np,b_np) |
|
248 |
res_cl=OpenCLSillyAddition(a_np,b_np) |
|
249 |
OpenCLElapsed=time.time()-TimeIn |
|
250 |
OpenCLRate=int(SIZE/OpenCLElapsed) |
|
251 |
print("OpenCLRate: %i" % OpenCLRate) |
|
252 |
|
|
253 |
# CUDA Implementation |
|
254 |
TimeIn=time.time() |
|
255 |
# res_cuda=CUDAAddition(a_np,b_np) |
|
256 |
res_cuda=CUDASillyAddition(a_np,b_np) |
|
257 |
CUDAElapsed=time.time()-TimeIn |
|
258 |
CUDARate=int(SIZE/CUDAElapsed) |
|
259 |
print("CUDARate: %i" % CUDARate) |
|
260 |
|
|
261 |
print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate)) |
|
262 |
print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate)) |
|
263 |
|
|
264 |
# Check on OpenCL with Numpy: |
|
265 |
print(res_cl - res_np) |
|
266 |
print(np.linalg.norm(res_cl - res_np)) |
|
267 |
try: |
|
268 |
assert np.allclose(res_np, res_cl) |
|
269 |
except: |
|
270 |
print("Results between Native & OpenCL seem to be too different!") |
|
271 |
|
|
272 |
# Check on CUDA with Numpy: |
|
273 |
print(res_cuda - res_np) |
|
274 |
print(np.linalg.norm(res_cuda - res_np)) |
|
275 |
try: |
|
276 |
assert np.allclose(res_np, res_cuda) |
|
277 |
except: |
|
278 |
print("Results between Native & CUDA seem to be too different!") |
|
279 |
|
|
280 |
|
|
0 | 281 |
ETSN/MySteps_5b.py (revision 269) | ||
---|---|---|
1 |
#!/usr/bin/env python3 |
|
2 |
|
|
3 |
import numpy as np |
|
4 |
import pyopencl as cl |
|
5 |
|
|
6 |
# piling 16 arithmetical functions |
|
7 |
def MySillyFunction(x): |
|
8 |
return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2)) |
|
9 |
|
|
10 |
# Native Operation under Numpy (for prototyping & tests |
|
11 |
def NativeAddition(a_np,b_np): |
|
12 |
return(a_np+b_np) |
|
13 |
|
|
14 |
# Native Operation with MySillyFunction under Numpy (for prototyping & tests |
|
15 |
def NativeSillyAddition(a_np,b_np): |
|
16 |
return(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(a_np))))))))))))))))+MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(b_np))))))))))))))))) |
|
17 |
|
|
18 |
# CUDA complete operation |
|
19 |
def CUDAAddition(a_np,b_np): |
|
20 |
import pycuda.autoinit |
|
21 |
import pycuda.driver as drv |
|
22 |
import numpy |
|
23 |
|
|
24 |
from pycuda.compiler import SourceModule |
|
25 |
mod = SourceModule(""" |
|
26 |
__global__ void sum(float *dest, float *a, float *b) |
|
27 |
{ |
|
28 |
// const int i = threadIdx.x; |
|
29 |
const int i = blockIdx.x; |
|
30 |
dest[i] = a[i] + b[i]; |
|
31 |
} |
|
32 |
""") |
|
33 |
|
|
34 |
# sum = mod.get_function("sum") |
|
35 |
sum = mod.get_function("sum") |
|
36 |
|
|
37 |
res_np = numpy.zeros_like(a_np) |
|
38 |
sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np), |
|
39 |
block=(1,1,1), grid=(a_np.size,1)) |
|
40 |
return(res_np) |
|
41 |
|
|
42 |
# CUDA Silly complete operation |
|
43 |
def CUDASillyAddition(a_np,b_np): |
|
44 |
import pycuda.autoinit |
|
45 |
import pycuda.driver as drv |
|
46 |
import numpy |
|
47 |
|
|
48 |
from pycuda.compiler import SourceModule |
|
49 |
mod = SourceModule(""" |
|
50 |
__device__ float MySillyFunction(float x) |
|
51 |
{ |
|
52 |
return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2)); |
|
53 |
} |
|
54 |
|
|
55 |
__global__ void sillysum(float *dest, float *a, float *b) |
|
56 |
{ |
|
57 |
const int i = blockIdx.x; |
|
58 |
dest[i] = MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(a[i])))))))))))))))) + MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(b[i])))))))))))))))); |
|
59 |
} |
|
60 |
""") |
|
61 |
|
|
62 |
# sum = mod.get_function("sum") |
|
63 |
sillysum = mod.get_function("sillysum") |
|
64 |
|
|
65 |
res_np = numpy.zeros_like(a_np) |
|
66 |
sillysum(drv.Out(res_np), drv.In(a_np), drv.In(b_np), |
|
67 |
block=(1,1,1), grid=(a_np.size,1)) |
|
68 |
return(res_np) |
|
69 |
|
|
70 |
# OpenCL complete operation |
|
71 |
def OpenCLAddition(a_np,b_np): |
|
72 |
|
|
73 |
# Context creation |
|
74 |
ctx = cl.create_some_context() |
|
75 |
# Every process is stored in a queue |
|
76 |
queue = cl.CommandQueue(ctx) |
|
77 |
|
|
78 |
TimeIn=time.time() |
|
79 |
# Copy from Host to Device using pointers |
|
80 |
mf = cl.mem_flags |
|
81 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
|
82 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
|
83 |
Elapsed=time.time()-TimeIn |
|
84 |
print("Copy from Host 2 Device : %.3f" % Elapsed) |
|
85 |
|
|
86 |
TimeIn=time.time() |
|
87 |
# Definition of kernel under OpenCL |
|
88 |
prg = cl.Program(ctx, """ |
|
89 |
__kernel void sum( |
|
90 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
91 |
{ |
|
92 |
int gid = get_global_id(0); |
|
93 |
res_g[gid] = a_g[gid] + b_g[gid]; |
|
94 |
} |
|
95 |
""").build() |
|
96 |
Elapsed=time.time()-TimeIn |
|
97 |
print("Building kernels : %.3f" % Elapsed) |
|
98 |
|
|
99 |
TimeIn=time.time() |
|
100 |
# Memory allocation on Device for result |
|
101 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
|
102 |
Elapsed=time.time()-TimeIn |
|
103 |
print("Allocation on Device for results : %.3f" % Elapsed) |
|
104 |
|
|
105 |
TimeIn=time.time() |
|
106 |
# Synthesis of function "sum" inside Kernel Sources |
|
107 |
knl = prg.sum # Use this Kernel object for repeated calls |
|
108 |
Elapsed=time.time()-TimeIn |
|
109 |
print("Synthesis of kernel : %.3f" % Elapsed) |
|
110 |
|
|
111 |
TimeIn=time.time() |
|
112 |
# Call of kernel previously defined |
|
113 |
knl(queue, a_np.shape, None, a_g, b_g, res_g) |
|
114 |
Elapsed=time.time()-TimeIn |
|
115 |
print("Execution of kernel : %.3f" % Elapsed) |
|
116 |
|
|
117 |
TimeIn=time.time() |
|
118 |
# Creation of vector for result with same size as input vectors |
|
119 |
res_np = np.empty_like(a_np) |
|
120 |
Elapsed=time.time()-TimeIn |
|
121 |
print("Allocation on Host for results: %.3f" % Elapsed) |
|
122 |
|
|
123 |
TimeIn=time.time() |
|
124 |
# Copy from Device to Host |
|
125 |
cl.enqueue_copy(queue, res_np, res_g) |
|
126 |
Elapsed=time.time()-TimeIn |
|
127 |
print("Copy from Device 2 Host : %.3f" % Elapsed) |
|
128 |
|
|
129 |
return(res_np) |
|
130 |
|
|
131 |
# OpenCL complete operation |
|
132 |
def OpenCLSillyAddition(a_np,b_np): |
|
133 |
|
|
134 |
# Context creation |
|
135 |
ctx = cl.create_some_context() |
|
136 |
# Every process is stored in a queue |
|
137 |
queue = cl.CommandQueue(ctx) |
|
138 |
|
|
139 |
TimeIn=time.time() |
|
140 |
# Copy from Host to Device using pointers |
|
141 |
mf = cl.mem_flags |
|
142 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
|
143 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
|
144 |
Elapsed=time.time()-TimeIn |
|
145 |
print("Copy from Host 2 Device : %.3f" % Elapsed) |
|
146 |
|
|
147 |
TimeIn=time.time() |
|
148 |
# Definition of kernel under OpenCL |
|
149 |
prg = cl.Program(ctx, """ |
|
150 |
|
|
151 |
float MySillyFunction(float x) |
|
152 |
{ |
|
153 |
return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2)); |
|
154 |
} |
|
155 |
|
|
156 |
__kernel void sillysum( |
|
157 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
158 |
{ |
|
159 |
int gid = get_global_id(0); |
|
160 |
res_g[gid] = MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(a_g[gid])))))))))))))))) + MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(b_g[gid])))))))))))))))); |
|
161 |
} |
|
162 |
|
|
163 |
__kernel void sum( |
|
164 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
165 |
{ |
|
166 |
int gid = get_global_id(0); |
|
167 |
res_g[gid] = a_g[gid] + b_g[gid]; |
|
168 |
} |
|
169 |
""").build() |
|
170 |
Elapsed=time.time()-TimeIn |
|
171 |
print("Building kernels : %.3f" % Elapsed) |
|
172 |
|
|
173 |
TimeIn=time.time() |
|
174 |
# Memory allocation on Device for result |
|
175 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
|
176 |
Elapsed=time.time()-TimeIn |
|
177 |
print("Allocation on Device for results : %.3f" % Elapsed) |
|
178 |
|
|
179 |
TimeIn=time.time() |
|
180 |
# Synthesis of function "sillysum" inside Kernel Sources |
|
181 |
knl = prg.sillysum # Use this Kernel object for repeated calls |
|
182 |
Elapsed=time.time()-TimeIn |
|
183 |
print("Synthesis of kernel : %.3f" % Elapsed) |
|
184 |
|
|
185 |
TimeIn=time.time() |
|
186 |
# Call of kernel previously defined |
|
187 |
CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g) |
|
188 |
# |
|
189 |
CallCL.wait() |
|
190 |
Elapsed=time.time()-TimeIn |
|
191 |
print("Execution of kernel : %.3f" % Elapsed) |
|
192 |
|
|
193 |
TimeIn=time.time() |
|
194 |
# Creation of vector for result with same size as input vectors |
|
195 |
res_np = np.empty_like(a_np) |
|
196 |
Elapsed=time.time()-TimeIn |
|
197 |
print("Allocation on Host for results: %.3f" % Elapsed) |
|
198 |
|
|
199 |
TimeIn=time.time() |
|
200 |
# Copy from Device to Host |
|
201 |
cl.enqueue_copy(queue, res_np, res_g) |
|
202 |
Elapsed=time.time()-TimeIn |
|
203 |
print("Copy from Device 2 Host : %.3f" % Elapsed) |
|
204 |
|
|
205 |
return(res_np) |
|
206 |
|
|
207 |
import sys |
|
208 |
import time |
|
209 |
|
|
210 |
if __name__=='__main__': |
|
211 |
|
|
212 |
# Size of input vectors definition based on stdin |
|
213 |
import sys |
|
214 |
try: |
|
215 |
SIZE=int(sys.argv[1]) |
|
216 |
print("Size of vectors set to %i" % SIZE) |
|
217 |
except: |
|
218 |
SIZE=50000 |
|
219 |
print("Size of vectors set to default size %i" % SIZE) |
|
220 |
|
|
221 |
a_np = np.random.rand(SIZE).astype(np.float32) |
|
222 |
b_np = np.random.rand(SIZE).astype(np.float32) |
|
223 |
|
|
224 |
# Native Implementation |
|
225 |
TimeIn=time.time() |
|
226 |
# res_np=NativeAddition(a_np,b_np) |
|
227 |
res_np=NativeSillyAddition(a_np,b_np) |
|
228 |
NativeElapsed=time.time()-TimeIn |
|
229 |
NativeRate=int(SIZE/NativeElapsed) |
|
230 |
print("NativeRate: %i" % NativeRate) |
|
231 |
|
|
232 |
# OpenCL Implementation |
|
233 |
TimeIn=time.time() |
|
234 |
# res_cl=OpenCLAddition(a_np,b_np) |
|
235 |
res_cl=OpenCLSillyAddition(a_np,b_np) |
|
236 |
OpenCLElapsed=time.time()-TimeIn |
|
237 |
OpenCLRate=int(SIZE/OpenCLElapsed) |
|
238 |
print("OpenCLRate: %i" % OpenCLRate) |
|
239 |
|
|
240 |
# CUDA Implementation |
|
241 |
TimeIn=time.time() |
|
242 |
# res_cuda=CUDAAddition(a_np,b_np) |
|
243 |
res_cuda=CUDASillyAddition(a_np,b_np) |
|
244 |
CUDAElapsed=time.time()-TimeIn |
|
245 |
CUDARate=int(SIZE/CUDAElapsed) |
|
246 |
print("CUDARate: %i" % CUDARate) |
|
247 |
|
|
248 |
print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate)) |
|
249 |
print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate)) |
|
250 |
|
|
251 |
# Check on CPU with Numpy: |
|
252 |
print(res_cl - res_np) |
|
253 |
print(np.linalg.norm(res_cl - res_np)) |
|
254 |
try: |
|
255 |
assert np.allclose(res_np, res_cl) |
|
256 |
except: |
|
257 |
print("Results between Native & OpenCL seem to be too different!") |
|
258 |
|
|
259 |
# Check on CPU with Numpy: |
|
260 |
print(res_cuda - res_np) |
|
261 |
print(np.linalg.norm(res_cuda - res_np)) |
|
262 |
try: |
|
263 |
assert np.allclose(res_np, res_cuda) |
|
264 |
except: |
|
265 |
print("Results between Native & CUDA seem to be too different!") |
|
266 |
|
|
0 | 267 |
ETSN/MySteps_5c.py (revision 269) | ||
---|---|---|
1 |
#!/usr/bin/env python3 |
|
2 |
|
|
3 |
import numpy as np |
|
4 |
import pyopencl as cl |
|
5 |
|
|
6 |
# piling 16 arithmetical functions |
|
7 |
def MySillyFunction(x): |
|
8 |
return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2)) |
|
9 |
|
|
10 |
# Native Operation under Numpy (for prototyping & tests |
|
11 |
def NativeAddition(a_np,b_np): |
|
12 |
return(a_np+b_np) |
|
13 |
|
|
14 |
# Native Operation with MySillyFunction under Numpy (for prototyping & tests |
|
15 |
def NativeSillyAddition(a_np,b_np): |
|
16 |
return(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(a_np))))))))))))))))+MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(b_np))))))))))))))))) |
|
17 |
|
|
18 |
# CUDA complete operation |
|
19 |
def CUDAAddition(a_np,b_np): |
|
20 |
import pycuda.autoinit |
|
21 |
import pycuda.driver as drv |
|
22 |
import numpy |
|
23 |
|
|
24 |
from pycuda.compiler import SourceModule |
|
25 |
mod = SourceModule(""" |
|
26 |
__global__ void sum(float *dest, float *a, float *b) |
|
27 |
{ |
|
28 |
// const int i = threadIdx.x; |
|
29 |
const int i = blockIdx.x; |
|
30 |
dest[i] = a[i] + b[i]; |
|
31 |
} |
|
32 |
""") |
|
33 |
|
|
34 |
# sum = mod.get_function("sum") |
|
35 |
sum = mod.get_function("sum") |
|
36 |
|
|
37 |
res_np = numpy.zeros_like(a_np) |
|
38 |
sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np), |
|
39 |
block=(1,1,1), grid=(a_np.size,1)) |
|
40 |
return(res_np) |
|
41 |
|
|
42 |
# CUDA Silly complete operation |
|
43 |
def CUDASillyAddition(a_np,b_np): |
|
44 |
import pycuda.autoinit |
|
45 |
import pycuda.driver as drv |
|
46 |
import numpy |
|
47 |
|
|
48 |
from pycuda.compiler import SourceModule |
|
49 |
mod = SourceModule(""" |
|
50 |
__device__ float MySillyFunction(float x) |
|
51 |
{ |
|
52 |
return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2)); |
|
53 |
} |
|
54 |
|
|
55 |
__global__ void sillysum(float *dest, float *a, float *b) |
|
56 |
{ |
|
57 |
const int i = blockIdx.x; |
|
58 |
dest[i] = MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(a[i])))))))))))))))) + MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(b[i])))))))))))))))); |
|
59 |
} |
|
60 |
|
|
61 |
__global__ void hybridsillysum(float *dest, float *a, float *b) |
|
62 |
{ |
|
63 |
const int i = threadIdx.x+blockDim.x*blockIdx.x; |
|
64 |
dest[i] = MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(a[i])))))))))))))))) + MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(b[i])))))))))))))))); |
|
65 |
} |
|
66 |
""") |
|
67 |
|
|
68 |
# sum = mod.get_function("sum") |
|
69 |
# sillysum = mod.get_function("sillysum") |
|
70 |
hybridsillysum = mod.get_function("hybridsillysum") |
|
71 |
|
|
72 |
res_np = numpy.zeros_like(a_np) |
|
73 |
threads=1024 |
|
74 |
blocks=int(a_np.size/threads) |
|
75 |
# sillysum(drv.Out(res_np), drv.In(a_np), drv.In(b_np), |
|
76 |
# block=(threads,1,1), grid=(blocks,1)) |
|
77 |
hybridsillysum(drv.Out(res_np), drv.In(a_np), drv.In(b_np), |
|
78 |
block=(threads,1,1), grid=(blocks,1)) |
|
79 |
return(res_np) |
|
80 |
|
|
81 |
# OpenCL complete operation |
|
82 |
def OpenCLAddition(a_np,b_np): |
|
83 |
|
|
84 |
# Context creation |
|
85 |
ctx = cl.create_some_context() |
|
86 |
# Every process is stored in a queue |
|
87 |
queue = cl.CommandQueue(ctx) |
|
88 |
|
|
89 |
TimeIn=time.time() |
|
90 |
# Copy from Host to Device using pointers |
|
91 |
mf = cl.mem_flags |
|
92 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
|
93 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
|
94 |
Elapsed=time.time()-TimeIn |
|
95 |
print("Copy from Host 2 Device : %.3f" % Elapsed) |
|
96 |
|
|
97 |
TimeIn=time.time() |
|
98 |
# Definition of kernel under OpenCL |
|
99 |
prg = cl.Program(ctx, """ |
|
100 |
__kernel void sum( |
|
101 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
102 |
{ |
|
103 |
int gid = get_global_id(0); |
|
104 |
res_g[gid] = a_g[gid] + b_g[gid]; |
|
105 |
} |
|
106 |
""").build() |
|
107 |
Elapsed=time.time()-TimeIn |
|
108 |
print("Building kernels : %.3f" % Elapsed) |
|
109 |
|
|
110 |
TimeIn=time.time() |
|
111 |
# Memory allocation on Device for result |
|
112 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
|
113 |
Elapsed=time.time()-TimeIn |
|
114 |
print("Allocation on Device for results : %.3f" % Elapsed) |
|
115 |
|
|
116 |
TimeIn=time.time() |
|
117 |
# Synthesis of function "sum" inside Kernel Sources |
|
118 |
knl = prg.sum # Use this Kernel object for repeated calls |
|
119 |
Elapsed=time.time()-TimeIn |
|
120 |
print("Synthesis of kernel : %.3f" % Elapsed) |
|
121 |
|
|
122 |
TimeIn=time.time() |
|
123 |
# Call of kernel previously defined |
|
124 |
knl(queue, a_np.shape, None, a_g, b_g, res_g) |
|
125 |
Elapsed=time.time()-TimeIn |
|
126 |
print("Execution of kernel : %.3f" % Elapsed) |
|
127 |
|
|
128 |
TimeIn=time.time() |
|
129 |
# Creation of vector for result with same size as input vectors |
|
130 |
res_np = np.empty_like(a_np) |
|
131 |
Elapsed=time.time()-TimeIn |
|
132 |
print("Allocation on Host for results: %.3f" % Elapsed) |
|
133 |
|
|
134 |
TimeIn=time.time() |
|
135 |
# Copy from Device to Host |
|
136 |
cl.enqueue_copy(queue, res_np, res_g) |
|
137 |
Elapsed=time.time()-TimeIn |
|
138 |
print("Copy from Device 2 Host : %.3f" % Elapsed) |
|
139 |
|
|
140 |
return(res_np) |
|
141 |
|
|
142 |
# OpenCL complete operation |
|
143 |
def OpenCLSillyAddition(a_np,b_np): |
|
144 |
|
|
145 |
# Context creation |
|
146 |
ctx = cl.create_some_context() |
|
147 |
# Every process is stored in a queue |
|
148 |
queue = cl.CommandQueue(ctx) |
|
149 |
|
|
150 |
TimeIn=time.time() |
|
151 |
# Copy from Host to Device using pointers |
|
152 |
mf = cl.mem_flags |
|
153 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
|
154 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
|
155 |
Elapsed=time.time()-TimeIn |
|
156 |
print("Copy from Host 2 Device : %.3f" % Elapsed) |
|
157 |
|
|
158 |
TimeIn=time.time() |
|
159 |
# Definition of kernel under OpenCL |
|
160 |
prg = cl.Program(ctx, """ |
|
161 |
|
|
162 |
float MySillyFunction(float x) |
|
163 |
{ |
|
164 |
return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2)); |
|
165 |
} |
|
166 |
|
|
167 |
__kernel void sillysum( |
|
168 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
169 |
{ |
|
170 |
int gid = get_global_id(0); |
|
171 |
res_g[gid] = MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(a_g[gid])))))))))))))))) + MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(MySillyFunction(b_g[gid])))))))))))))))); |
|
172 |
} |
|
173 |
|
|
174 |
__kernel void sum( |
|
175 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
176 |
{ |
|
177 |
int gid = get_global_id(0); |
|
178 |
res_g[gid] = a_g[gid] + b_g[gid]; |
|
179 |
} |
|
180 |
""").build() |
|
181 |
Elapsed=time.time()-TimeIn |
|
182 |
print("Building kernels : %.3f" % Elapsed) |
|
183 |
|
|
184 |
TimeIn=time.time() |
|
185 |
# Memory allocation on Device for result |
|
186 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
|
187 |
Elapsed=time.time()-TimeIn |
|
188 |
print("Allocation on Device for results : %.3f" % Elapsed) |
|
189 |
|
|
190 |
TimeIn=time.time() |
|
191 |
# Synthesis of function "sillysum" inside Kernel Sources |
|
192 |
knl = prg.sillysum # Use this Kernel object for repeated calls |
|
193 |
Elapsed=time.time()-TimeIn |
|
194 |
print("Synthesis of kernel : %.3f" % Elapsed) |
|
195 |
|
|
196 |
TimeIn=time.time() |
|
197 |
# Call of kernel previously defined |
|
198 |
CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g) |
|
199 |
# |
|
200 |
CallCL.wait() |
|
201 |
Elapsed=time.time()-TimeIn |
|
202 |
print("Execution of kernel : %.3f" % Elapsed) |
|
203 |
|
|
204 |
TimeIn=time.time() |
|
205 |
# Creation of vector for result with same size as input vectors |
|
206 |
res_np = np.empty_like(a_np) |
|
207 |
Elapsed=time.time()-TimeIn |
|
208 |
print("Allocation on Host for results: %.3f" % Elapsed) |
|
209 |
|
|
210 |
TimeIn=time.time() |
|
211 |
# Copy from Device to Host |
|
212 |
cl.enqueue_copy(queue, res_np, res_g) |
|
213 |
Elapsed=time.time()-TimeIn |
|
214 |
print("Copy from Device 2 Host : %.3f" % Elapsed) |
|
215 |
|
|
216 |
return(res_np) |
|
217 |
|
|
218 |
import sys |
|
219 |
import time |
|
220 |
|
|
221 |
if __name__=='__main__': |
|
222 |
|
|
223 |
# Size of input vectors definition based on stdin |
|
224 |
import sys |
|
225 |
try: |
|
226 |
SIZE=int(sys.argv[1]) |
|
227 |
print("Size of vectors set to %i" % SIZE) |
|
228 |
except: |
|
229 |
SIZE=50000 |
|
230 |
print("Size of vectors set to default size %i" % SIZE) |
|
231 |
|
|
232 |
a_np = np.random.rand(SIZE).astype(np.float32) |
|
233 |
b_np = np.random.rand(SIZE).astype(np.float32) |
|
234 |
|
|
235 |
# Native Implementation |
|
236 |
TimeIn=time.time() |
|
237 |
# res_np=NativeAddition(a_np,b_np) |
|
238 |
res_np=NativeSillyAddition(a_np,b_np) |
|
239 |
NativeElapsed=time.time()-TimeIn |
|
240 |
NativeRate=int(SIZE/NativeElapsed) |
|
241 |
print("NativeRate: %i" % NativeRate) |
|
242 |
|
|
243 |
# OpenCL Implementation |
|
244 |
TimeIn=time.time() |
|
245 |
# res_cl=OpenCLAddition(a_np,b_np) |
|
246 |
res_cl=OpenCLSillyAddition(a_np,b_np) |
|
247 |
OpenCLElapsed=time.time()-TimeIn |
|
248 |
OpenCLRate=int(SIZE/OpenCLElapsed) |
|
249 |
print("OpenCLRate: %i" % OpenCLRate) |
|
250 |
|
|
251 |
# CUDA Implementation |
|
252 |
TimeIn=time.time() |
|
253 |
# res_cuda=CUDAAddition(a_np,b_np) |
|
254 |
res_cuda=CUDASillyAddition(a_np,b_np) |
|
255 |
CUDAElapsed=time.time()-TimeIn |
|
256 |
CUDARate=int(SIZE/CUDAElapsed) |
|
257 |
print("CUDARate: %i" % CUDARate) |
|
258 |
|
|
259 |
print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate)) |
|
260 |
print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate)) |
|
261 |
|
|
262 |
# Check on CPU with Numpy: |
|
263 |
print(res_cl - res_np) |
|
264 |
print(np.linalg.norm(res_cl - res_np)) |
|
265 |
try: |
|
266 |
assert np.allclose(res_np, res_cl) |
|
267 |
except: |
|
268 |
print("Results between Native & OpenCL seem to be too different!") |
|
269 |
|
|
270 |
# Check on CPU with Numpy: |
|
271 |
print(res_cuda - res_np) |
|
272 |
print(np.linalg.norm(res_cuda - res_np)) |
|
273 |
try: |
|
274 |
assert np.allclose(res_np, res_cuda) |
|
275 |
except: |
|
276 |
print("Results between Native & CUDA seem to be too different!") |
|
277 |
|
|
0 | 278 |
ETSN/MySteps_3.py (revision 269) | ||
---|---|---|
191 | 191 |
a_np = np.random.rand(SIZE).astype(np.float32) |
192 | 192 |
b_np = np.random.rand(SIZE).astype(np.float32) |
193 | 193 |
|
194 |
# Native Implementation |
|
194 | 195 |
TimeIn=time.time() |
195 | 196 |
# res_np=NativeSillyAddition(a_np,b_np) |
196 | 197 |
res_np=NativeAddition(a_np,b_np) |
... | ... | |
198 | 199 |
NativeRate=int(SIZE/NativeElapsed) |
199 | 200 |
print("NativeRate: %i" % NativeRate) |
200 | 201 |
|
202 |
# OpenCL Implementation |
|
201 | 203 |
TimeIn=time.time() |
202 | 204 |
# res_cl=OpenCLSillyAddition(a_np,b_np) |
203 | 205 |
res_cl=OpenCLAddition(a_np,b_np) |
... | ... | |
205 | 207 |
OpenCLRate=int(SIZE/OpenCLElapsed) |
206 | 208 |
print("OpenCLRate: %i" % OpenCLRate) |
207 | 209 |
|
210 |
# CUDA Implementation |
|
208 | 211 |
TimeIn=time.time() |
209 |
# res_cl=OpenCLSillyAddition(a_np,b_np) |
|
210 | 212 |
res_cuda=CUDAAddition(a_np,b_np) |
211 | 213 |
CUDAElapsed=time.time()-TimeIn |
212 | 214 |
CUDARate=int(SIZE/CUDAElapsed) |
Formats disponibles : Unified diff