Révision 268
ETSN/MySteps_0.py (revision 268) | ||
---|---|---|
1 |
#!/usr/bin/env python3 |
|
2 |
|
|
3 |
import numpy as np |
|
4 |
import pyopencl as cl |
|
5 |
|
|
6 |
# Native Operation under Numpy (for prototyping & tests |
|
7 |
def NativeAddition(a_np,b_np): |
|
8 |
return(a_np+b_np) |
|
9 |
|
|
10 |
# OpenCL complete operation |
|
11 |
def OpenCLAddition(a_np,b_np): |
|
12 |
|
|
13 |
# Context creation |
|
14 |
ctx = cl.create_some_context() |
|
15 |
# Every process is stored in a queue |
|
16 |
queue = cl.CommandQueue(ctx) |
|
17 |
|
|
18 |
# Copy from Host to Device using pointers |
|
19 |
mf = cl.mem_flags |
|
20 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
|
21 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
|
22 |
|
|
23 |
# Definition of kernel under OpenCL |
|
24 |
prg = cl.Program(ctx, """ |
|
25 |
__kernel void sum( |
|
26 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
27 |
{ |
|
28 |
int gid = get_global_id(0); |
|
29 |
res_g[gid] = a_g[gid] + b_g[gid]; |
|
30 |
} |
|
31 |
""").build() |
|
32 |
|
|
33 |
# Memory allocation on Device for result |
|
34 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
|
35 |
# Synthesis of function "sum" inside Kernel Sources |
|
36 |
knl = prg.sum # Use this Kernel object for repeated calls |
|
37 |
# Call of kernel previously defined |
|
38 |
knl(queue, a_np.shape, None, a_g, b_g, res_g) |
|
39 |
|
|
40 |
# Creation of vector for result with same size as input vectors |
|
41 |
res_np = np.empty_like(a_np) |
|
42 |
# Copy from Device to Host |
|
43 |
cl.enqueue_copy(queue, res_np, res_g) |
|
44 |
|
|
45 |
return(res_np) |
|
46 |
|
|
47 |
#if __name__=='__main__': |
|
48 |
|
|
49 |
a_np = np.random.rand(50000).astype(np.float32) |
|
50 |
b_np = np.random.rand(50000).astype(np.float32) |
|
51 |
|
|
52 |
res_np=NativeAddition(a_np,b_np) |
|
53 |
res_cl=OpenCLAddition(a_np,b_np) |
|
54 |
|
|
55 |
# Check on CPU with Numpy: |
|
56 |
print(res_cl - res_np) |
|
57 |
print(np.linalg.norm(res_cl - res_np)) |
|
58 |
assert np.allclose(res_np, res_cl) |
|
0 | 59 |
ETSN/MySteps.py (revision 268) | ||
---|---|---|
1 |
#!/usr/bin/env python3 |
|
2 |
|
|
3 |
import numpy as np |
|
4 |
import pyopencl as cl |
|
5 |
|
|
6 |
a_np = np.random.rand(50000).astype(np.float32) |
|
7 |
b_np = np.random.rand(50000).astype(np.float32) |
|
8 |
|
|
9 |
ctx = cl.create_some_context() |
|
10 |
queue = cl.CommandQueue(ctx) |
|
11 |
|
|
12 |
mf = cl.mem_flags |
|
13 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
|
14 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
|
15 |
|
|
16 |
prg = cl.Program(ctx, """ |
|
17 |
__kernel void sum( |
|
18 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
19 |
{ |
|
20 |
int gid = get_global_id(0); |
|
21 |
res_g[gid] = a_g[gid] + b_g[gid]; |
|
22 |
} |
|
23 |
""").build() |
|
24 |
|
|
25 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
|
26 |
knl = prg.sum # Use this Kernel object for repeated calls |
|
27 |
knl(queue, a_np.shape, None, a_g, b_g, res_g) |
|
28 |
|
|
29 |
res_np = np.empty_like(a_np) |
|
30 |
cl.enqueue_copy(queue, res_np, res_g) |
|
31 |
|
|
32 |
# Check on CPU with Numpy: |
|
33 |
print(res_np - (a_np + b_np)) |
|
34 |
print(np.linalg.norm(res_np - (a_np + b_np))) |
|
35 |
assert np.allclose(res_np, a_np + b_np) |
|
0 | 36 |
ETSN/MySteps_1.py (revision 268) | ||
---|---|---|
1 |
#!/usr/bin/env python3 |
|
2 |
|
|
3 |
import numpy as np |
|
4 |
import pyopencl as cl |
|
5 |
|
|
6 |
# Native Operation under Numpy (for prototyping & tests |
|
7 |
def NativeAddition(a_np,b_np): |
|
8 |
return(a_np+b_np) |
|
9 |
|
|
10 |
# OpenCL complete operation |
|
11 |
def OpenCLAddition(a_np,b_np): |
|
12 |
|
|
13 |
# Context creation |
|
14 |
ctx = cl.create_some_context() |
|
15 |
# Every process is stored in a queue |
|
16 |
queue = cl.CommandQueue(ctx) |
|
17 |
|
|
18 |
# Copy from Host to Device using pointers |
|
19 |
mf = cl.mem_flags |
|
20 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
|
21 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
|
22 |
|
|
23 |
# Definition of kernel under OpenCL |
|
24 |
prg = cl.Program(ctx, """ |
|
25 |
__kernel void sum( |
|
26 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
27 |
{ |
|
28 |
int gid = get_global_id(0); |
|
29 |
res_g[gid] = a_g[gid] + b_g[gid]; |
|
30 |
} |
|
31 |
""").build() |
|
32 |
|
|
33 |
# Memory allocation on Device for result |
|
34 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
|
35 |
# Synthesis of function "sum" inside Kernel Sources |
|
36 |
knl = prg.sum # Use this Kernel object for repeated calls |
|
37 |
# Call of kernel previously defined |
|
38 |
knl(queue, a_np.shape, None, a_g, b_g, res_g) |
|
39 |
|
|
40 |
# Creation of vector for result with same size as input vectors |
|
41 |
res_np = np.empty_like(a_np) |
|
42 |
# Copy from Device to Host |
|
43 |
cl.enqueue_copy(queue, res_np, res_g) |
|
44 |
|
|
45 |
return(res_np) |
|
46 |
|
|
47 |
import sys |
|
48 |
import time |
|
49 |
|
|
50 |
if __name__=='__main__': |
|
51 |
|
|
52 |
# Size of input vectors definition based on stdin |
|
53 |
import sys |
|
54 |
try: |
|
55 |
SIZE=int(sys.argv[1]) |
|
56 |
print("Size of vectors set to %i" % SIZE) |
|
57 |
except: |
|
58 |
SIZE=50000 |
|
59 |
print("Size of vectors set to default size %i" % SIZE) |
|
60 |
|
|
61 |
a_np = np.random.rand(SIZE).astype(np.float32) |
|
62 |
b_np = np.random.rand(SIZE).astype(np.float32) |
|
63 |
|
|
64 |
TimeIn=time.time() |
|
65 |
res_np=NativeAddition(a_np,b_np) |
|
66 |
NativeElapsed=time.time()-TimeIn |
|
67 |
NativeRate=int(SIZE/NativeElapsed) |
|
68 |
print("NativeRate: %i" % NativeRate) |
|
69 |
|
|
70 |
TimeIn=time.time() |
|
71 |
res_cl=OpenCLAddition(a_np,b_np) |
|
72 |
OpenCLElapsed=time.time()-TimeIn |
|
73 |
OpenCLRate=int(SIZE/OpenCLElapsed) |
|
74 |
print("OpenCLRate: %i" % OpenCLRate) |
|
75 |
|
|
76 |
print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate)) |
|
77 |
|
|
78 |
# Check on CPU with Numpy: |
|
79 |
print(res_cl - res_np) |
|
80 |
print(np.linalg.norm(res_cl - res_np)) |
|
81 |
assert np.allclose(res_np, res_cl) |
|
0 | 82 |
ETSN/MySteps_2.py (revision 268) | ||
---|---|---|
1 |
#!/usr/bin/env python3 |
|
2 |
|
|
3 |
import numpy as np |
|
4 |
import pyopencl as cl |
|
5 |
|
|
6 |
# piling 16 arithmetical functions |
|
7 |
def MySillyFunction(x): |
|
8 |
return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2)) |
|
9 |
|
|
10 |
# Native Operation under Numpy (for prototyping & tests |
|
11 |
def NativeAddition(a_np,b_np): |
|
12 |
return(a_np+b_np) |
|
13 |
|
|
14 |
# Native Operation with MySillyFunction under Numpy (for prototyping & tests |
|
15 |
def NativeSillyAddition(a_np,b_np): |
|
16 |
return(MySillyFunction(a_np)+MySillyFunction(b_np)) |
|
17 |
|
|
18 |
# OpenCL complete operation |
|
19 |
def OpenCLAddition(a_np,b_np): |
|
20 |
|
|
21 |
# Context creation |
|
22 |
ctx = cl.create_some_context() |
|
23 |
# Every process is stored in a queue |
|
24 |
queue = cl.CommandQueue(ctx) |
|
25 |
|
|
26 |
TimeIn=time.time() |
|
27 |
# Copy from Host to Device using pointers |
|
28 |
mf = cl.mem_flags |
|
29 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
|
30 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
|
31 |
Elapsed=time.time()-TimeIn |
|
32 |
print("Copy from Host 2 Device : %.3f" % Elapsed) |
|
33 |
|
|
34 |
TimeIn=time.time() |
|
35 |
# Definition of kernel under OpenCL |
|
36 |
prg = cl.Program(ctx, """ |
|
37 |
__kernel void sum( |
|
38 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
39 |
{ |
|
40 |
int gid = get_global_id(0); |
|
41 |
res_g[gid] = a_g[gid] + b_g[gid]; |
|
42 |
} |
|
43 |
""").build() |
|
44 |
Elapsed=time.time()-TimeIn |
|
45 |
print("Building kernels : %.3f" % Elapsed) |
|
46 |
|
|
47 |
TimeIn=time.time() |
|
48 |
# Memory allocation on Device for result |
|
49 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
|
50 |
Elapsed=time.time()-TimeIn |
|
51 |
print("Allocation on Device for results : %.3f" % Elapsed) |
|
52 |
|
|
53 |
TimeIn=time.time() |
|
54 |
# Synthesis of function "sum" inside Kernel Sources |
|
55 |
knl = prg.sum # Use this Kernel object for repeated calls |
|
56 |
Elapsed=time.time()-TimeIn |
|
57 |
print("Synthesis of kernel : %.3f" % Elapsed) |
|
58 |
|
|
59 |
TimeIn=time.time() |
|
60 |
# Call of kernel previously defined |
|
61 |
knl(queue, a_np.shape, None, a_g, b_g, res_g) |
|
62 |
Elapsed=time.time()-TimeIn |
|
63 |
print("Execution of kernel : %.3f" % Elapsed) |
|
64 |
|
|
65 |
TimeIn=time.time() |
|
66 |
# Creation of vector for result with same size as input vectors |
|
67 |
res_np = np.empty_like(a_np) |
|
68 |
Elapsed=time.time()-TimeIn |
|
69 |
print("Allocation on Host for results: %.3f" % Elapsed) |
|
70 |
|
|
71 |
TimeIn=time.time() |
|
72 |
# Copy from Device to Host |
|
73 |
cl.enqueue_copy(queue, res_np, res_g) |
|
74 |
Elapsed=time.time()-TimeIn |
|
75 |
print("Copy from Device 2 Host : %.3f" % Elapsed) |
|
76 |
|
|
77 |
return(res_np) |
|
78 |
|
|
79 |
# OpenCL complete operation |
|
80 |
def OpenCLSillyAddition(a_np,b_np): |
|
81 |
|
|
82 |
# Context creation |
|
83 |
ctx = cl.create_some_context() |
|
84 |
# Every process is stored in a queue |
|
85 |
queue = cl.CommandQueue(ctx) |
|
86 |
|
|
87 |
TimeIn=time.time() |
|
88 |
# Copy from Host to Device using pointers |
|
89 |
mf = cl.mem_flags |
|
90 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
|
91 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
|
92 |
Elapsed=time.time()-TimeIn |
|
93 |
print("Copy from Host 2 Device : %.3f" % Elapsed) |
|
94 |
|
|
95 |
TimeIn=time.time() |
|
96 |
# Definition of kernel under OpenCL |
|
97 |
prg = cl.Program(ctx, """ |
|
98 |
|
|
99 |
float MySillyFunction(float x) |
|
100 |
{ |
|
101 |
return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2)); |
|
102 |
} |
|
103 |
|
|
104 |
__kernel void sillysum( |
|
105 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
106 |
{ |
|
107 |
int gid = get_global_id(0); |
|
108 |
res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]); |
|
109 |
} |
|
110 |
|
|
111 |
__kernel void sum( |
|
112 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
113 |
{ |
|
114 |
int gid = get_global_id(0); |
|
115 |
res_g[gid] = a_g[gid] + b_g[gid]; |
|
116 |
} |
|
117 |
""").build() |
|
118 |
Elapsed=time.time()-TimeIn |
|
119 |
print("Building kernels : %.3f" % Elapsed) |
|
120 |
|
|
121 |
TimeIn=time.time() |
|
122 |
# Memory allocation on Device for result |
|
123 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
|
124 |
Elapsed=time.time()-TimeIn |
|
125 |
print("Allocation on Device for results : %.3f" % Elapsed) |
|
126 |
|
|
127 |
TimeIn=time.time() |
|
128 |
# Synthesis of function "sillysum" inside Kernel Sources |
|
129 |
knl = prg.sillysum # Use this Kernel object for repeated calls |
|
130 |
Elapsed=time.time()-TimeIn |
|
131 |
print("Synthesis of kernel : %.3f" % Elapsed) |
|
132 |
|
|
133 |
TimeIn=time.time() |
|
134 |
# Call of kernel previously defined |
|
135 |
CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g) |
|
136 |
# |
|
137 |
CallCL.wait() |
|
138 |
Elapsed=time.time()-TimeIn |
|
139 |
print("Execution of kernel : %.3f" % Elapsed) |
|
140 |
|
|
141 |
TimeIn=time.time() |
|
142 |
# Creation of vector for result with same size as input vectors |
|
143 |
res_np = np.empty_like(a_np) |
|
144 |
Elapsed=time.time()-TimeIn |
|
145 |
print("Allocation on Host for results: %.3f" % Elapsed) |
|
146 |
|
|
147 |
TimeIn=time.time() |
|
148 |
# Copy from Device to Host |
|
149 |
cl.enqueue_copy(queue, res_np, res_g) |
|
150 |
Elapsed=time.time()-TimeIn |
|
151 |
print("Copy from Device 2 Host : %.3f" % Elapsed) |
|
152 |
|
|
153 |
return(res_np) |
|
154 |
|
|
155 |
import sys |
|
156 |
import time |
|
157 |
|
|
158 |
if __name__=='__main__': |
|
159 |
|
|
160 |
# Size of input vectors definition based on stdin |
|
161 |
import sys |
|
162 |
try: |
|
163 |
SIZE=int(sys.argv[1]) |
|
164 |
print("Size of vectors set to %i" % SIZE) |
|
165 |
except: |
|
166 |
SIZE=50000 |
|
167 |
print("Size of vectors set to default size %i" % SIZE) |
|
168 |
|
|
169 |
a_np = np.random.rand(SIZE).astype(np.float32) |
|
170 |
b_np = np.random.rand(SIZE).astype(np.float32) |
|
171 |
|
|
172 |
TimeIn=time.time() |
|
173 |
res_np=NativeSillyAddition(a_np,b_np) |
|
174 |
NativeElapsed=time.time()-TimeIn |
|
175 |
NativeRate=int(SIZE/NativeElapsed) |
|
176 |
print("NativeRate: %i" % NativeRate) |
|
177 |
|
|
178 |
TimeIn=time.time() |
|
179 |
res_cl=OpenCLSillyAddition(a_np,b_np) |
|
180 |
OpenCLElapsed=time.time()-TimeIn |
|
181 |
OpenCLRate=int(SIZE/OpenCLElapsed) |
|
182 |
print("OpenCLRate: %i" % OpenCLRate) |
|
183 |
|
|
184 |
print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate)) |
|
185 |
|
|
186 |
# Check on CPU with Numpy: |
|
187 |
print(res_cl - res_np) |
|
188 |
print(np.linalg.norm(res_cl - res_np)) |
|
189 |
assert np.allclose(res_np, res_cl,rtol=1e-4) |
|
0 | 190 |
ETSN/MySteps_3.py (revision 268) | ||
---|---|---|
1 |
#!/usr/bin/env python3 |
|
2 |
|
|
3 |
import numpy as np |
|
4 |
import pyopencl as cl |
|
5 |
|
|
6 |
# piling 16 arithmetical functions |
|
7 |
def MySillyFunction(x): |
|
8 |
return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2)) |
|
9 |
|
|
10 |
# Native Operation under Numpy (for prototyping & tests |
|
11 |
def NativeAddition(a_np,b_np): |
|
12 |
return(a_np+b_np) |
|
13 |
|
|
14 |
# Native Operation with MySillyFunction under Numpy (for prototyping & tests |
|
15 |
def NativeSillyAddition(a_np,b_np): |
|
16 |
return(MySillyFunction(a_np)+MySillyFunction(b_np)) |
|
17 |
|
|
18 |
# CUDA complete operation |
|
19 |
def CUDAAddition(a_np,b_np): |
|
20 |
import pycuda.autoinit |
|
21 |
import pycuda.driver as drv |
|
22 |
import numpy |
|
23 |
|
|
24 |
from pycuda.compiler import SourceModule |
|
25 |
mod = SourceModule(""" |
|
26 |
__global__ void sum(float *dest, float *a, float *b) |
|
27 |
{ |
|
28 |
const int i = threadIdx.x; |
|
29 |
dest[i] = a[i] + b[i]; |
|
30 |
} |
|
31 |
""") |
|
32 |
|
|
33 |
sum = mod.get_function("sum") |
|
34 |
|
|
35 |
res_np = numpy.zeros_like(a_np) |
|
36 |
sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np), |
|
37 |
block=(a_np.size,1,1), grid=(1,1)) |
|
38 |
return(res_np) |
|
39 |
|
|
40 |
# OpenCL complete operation |
|
41 |
def OpenCLAddition(a_np,b_np): |
|
42 |
|
|
43 |
# Context creation |
|
44 |
ctx = cl.create_some_context() |
|
45 |
# Every process is stored in a queue |
|
46 |
queue = cl.CommandQueue(ctx) |
|
47 |
|
|
48 |
TimeIn=time.time() |
|
49 |
# Copy from Host to Device using pointers |
|
50 |
mf = cl.mem_flags |
|
51 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
|
52 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
|
53 |
Elapsed=time.time()-TimeIn |
|
54 |
print("Copy from Host 2 Device : %.3f" % Elapsed) |
|
55 |
|
|
56 |
TimeIn=time.time() |
|
57 |
# Definition of kernel under OpenCL |
|
58 |
prg = cl.Program(ctx, """ |
|
59 |
__kernel void sum( |
|
60 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
61 |
{ |
|
62 |
int gid = get_global_id(0); |
|
63 |
res_g[gid] = a_g[gid] + b_g[gid]; |
|
64 |
} |
|
65 |
""").build() |
|
66 |
Elapsed=time.time()-TimeIn |
|
67 |
print("Building kernels : %.3f" % Elapsed) |
|
68 |
|
|
69 |
TimeIn=time.time() |
|
70 |
# Memory allocation on Device for result |
|
71 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
|
72 |
Elapsed=time.time()-TimeIn |
|
73 |
print("Allocation on Device for results : %.3f" % Elapsed) |
|
74 |
|
|
75 |
TimeIn=time.time() |
|
76 |
# Synthesis of function "sum" inside Kernel Sources |
|
77 |
knl = prg.sum # Use this Kernel object for repeated calls |
|
78 |
Elapsed=time.time()-TimeIn |
|
79 |
print("Synthesis of kernel : %.3f" % Elapsed) |
|
80 |
|
|
81 |
TimeIn=time.time() |
|
82 |
# Call of kernel previously defined |
|
83 |
knl(queue, a_np.shape, None, a_g, b_g, res_g) |
|
84 |
Elapsed=time.time()-TimeIn |
|
85 |
print("Execution of kernel : %.3f" % Elapsed) |
|
86 |
|
|
87 |
TimeIn=time.time() |
|
88 |
# Creation of vector for result with same size as input vectors |
|
89 |
res_np = np.empty_like(a_np) |
|
90 |
Elapsed=time.time()-TimeIn |
|
91 |
print("Allocation on Host for results: %.3f" % Elapsed) |
|
92 |
|
|
93 |
TimeIn=time.time() |
|
94 |
# Copy from Device to Host |
|
95 |
cl.enqueue_copy(queue, res_np, res_g) |
|
96 |
Elapsed=time.time()-TimeIn |
|
97 |
print("Copy from Device 2 Host : %.3f" % Elapsed) |
|
98 |
|
|
99 |
return(res_np) |
|
100 |
|
|
101 |
# OpenCL complete operation |
|
102 |
def OpenCLSillyAddition(a_np,b_np): |
|
103 |
|
|
104 |
# Context creation |
|
105 |
ctx = cl.create_some_context() |
|
106 |
# Every process is stored in a queue |
|
107 |
queue = cl.CommandQueue(ctx) |
|
108 |
|
|
109 |
TimeIn=time.time() |
|
110 |
# Copy from Host to Device using pointers |
|
111 |
mf = cl.mem_flags |
|
112 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
|
113 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
|
114 |
Elapsed=time.time()-TimeIn |
|
115 |
print("Copy from Host 2 Device : %.3f" % Elapsed) |
|
116 |
|
|
117 |
TimeIn=time.time() |
|
118 |
# Definition of kernel under OpenCL |
|
119 |
prg = cl.Program(ctx, """ |
|
120 |
|
|
121 |
float MySillyFunction(float x) |
|
122 |
{ |
|
123 |
return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2)); |
|
124 |
} |
|
125 |
|
|
126 |
__kernel void sillysum( |
|
127 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
128 |
{ |
|
129 |
int gid = get_global_id(0); |
|
130 |
res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]); |
|
131 |
} |
|
132 |
|
|
133 |
__kernel void sum( |
|
134 |
__global const float *a_g, __global const float *b_g, __global float *res_g) |
|
135 |
{ |
|
136 |
int gid = get_global_id(0); |
|
137 |
res_g[gid] = a_g[gid] + b_g[gid]; |
|
138 |
} |
|
139 |
""").build() |
|
140 |
Elapsed=time.time()-TimeIn |
|
141 |
print("Building kernels : %.3f" % Elapsed) |
|
142 |
|
|
143 |
TimeIn=time.time() |
|
144 |
# Memory allocation on Device for result |
|
145 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
|
146 |
Elapsed=time.time()-TimeIn |
|
147 |
print("Allocation on Device for results : %.3f" % Elapsed) |
|
148 |
|
|
149 |
TimeIn=time.time() |
|
150 |
# Synthesis of function "sillysum" inside Kernel Sources |
|
151 |
knl = prg.sillysum # Use this Kernel object for repeated calls |
|
152 |
Elapsed=time.time()-TimeIn |
|
153 |
print("Synthesis of kernel : %.3f" % Elapsed) |
|
154 |
|
|
155 |
TimeIn=time.time() |
|
156 |
# Call of kernel previously defined |
|
157 |
CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g) |
|
158 |
# |
|
159 |
CallCL.wait() |
|
160 |
Elapsed=time.time()-TimeIn |
|
161 |
print("Execution of kernel : %.3f" % Elapsed) |
|
162 |
|
|
163 |
TimeIn=time.time() |
|
164 |
# Creation of vector for result with same size as input vectors |
|
165 |
res_np = np.empty_like(a_np) |
|
166 |
Elapsed=time.time()-TimeIn |
|
167 |
print("Allocation on Host for results: %.3f" % Elapsed) |
|
168 |
|
|
169 |
TimeIn=time.time() |
|
170 |
# Copy from Device to Host |
|
171 |
cl.enqueue_copy(queue, res_np, res_g) |
|
172 |
Elapsed=time.time()-TimeIn |
|
173 |
print("Copy from Device 2 Host : %.3f" % Elapsed) |
|
174 |
|
|
175 |
return(res_np) |
|
176 |
|
|
177 |
import sys |
|
178 |
import time |
|
179 |
|
|
180 |
if __name__=='__main__': |
|
181 |
|
|
182 |
# Size of input vectors definition based on stdin |
|
183 |
import sys |
|
184 |
try: |
|
185 |
SIZE=int(sys.argv[1]) |
|
186 |
print("Size of vectors set to %i" % SIZE) |
|
187 |
except: |
|
188 |
SIZE=50000 |
|
189 |
print("Size of vectors set to default size %i" % SIZE) |
|
190 |
|
|
191 |
a_np = np.random.rand(SIZE).astype(np.float32) |
|
192 |
b_np = np.random.rand(SIZE).astype(np.float32) |
|
193 |
|
|
194 |
TimeIn=time.time() |
|
195 |
# res_np=NativeSillyAddition(a_np,b_np) |
|
196 |
res_np=NativeAddition(a_np,b_np) |
|
197 |
NativeElapsed=time.time()-TimeIn |
|
198 |
NativeRate=int(SIZE/NativeElapsed) |
|
199 |
print("NativeRate: %i" % NativeRate) |
|
200 |
|
|
201 |
TimeIn=time.time() |
|
202 |
# res_cl=OpenCLSillyAddition(a_np,b_np) |
|
203 |
res_cl=OpenCLAddition(a_np,b_np) |
|
204 |
OpenCLElapsed=time.time()-TimeIn |
|
205 |
OpenCLRate=int(SIZE/OpenCLElapsed) |
|
206 |
print("OpenCLRate: %i" % OpenCLRate) |
|
207 |
|
|
208 |
TimeIn=time.time() |
|
209 |
# res_cl=OpenCLSillyAddition(a_np,b_np) |
|
210 |
res_cuda=CUDAAddition(a_np,b_np) |
|
211 |
CUDAElapsed=time.time()-TimeIn |
|
212 |
CUDARate=int(SIZE/CUDAElapsed) |
|
213 |
print("CUDARate: %i" % CUDARate) |
|
214 |
|
|
215 |
print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate)) |
|
216 |
print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate)) |
|
217 |
|
|
218 |
# Check on CPU with Numpy: |
|
219 |
print(res_cl - res_np) |
|
220 |
print(np.linalg.norm(res_cl - res_np)) |
|
221 |
assert np.allclose(res_np, res_cl) |
|
222 |
|
|
223 |
# Check on CPU with Numpy: |
|
224 |
print(res_cuda - res_np) |
|
225 |
print(np.linalg.norm(res_cuda - res_np)) |
|
226 |
assert np.allclose(res_np, res_cuda) |
|
0 | 227 |
Formats disponibles : Unified diff