root / Pi / XPU / PiHybrid.py @ 246
Historique | Voir | Annoter | Télécharger (14,13 ko)
1 |
#!/usr/bin/env python
|
---|---|
2 |
|
3 |
#
|
4 |
# Pi-by-MonteCarlo using PyCUDA/PyOpenCL
|
5 |
#
|
6 |
# CC BY-NC-SA 2011 : Emmanuel QUEMENER <emmanuel.quemener@gmail.com>
|
7 |
# Cecill v2 : Emmanuel QUEMENER <emmanuel.quemener@gmail.com>
|
8 |
#
|
9 |
# Thanks to Andreas Klockner for PyCUDA:
|
10 |
# http://mathema.tician.de/software/pycuda
|
11 |
# Thanks to Andreas Klockner for PyOpenCL:
|
12 |
# http://mathema.tician.de/software/pyopencl
|
13 |
#
|
14 |
|
15 |
# 2013-01-01 : problems with launch timeout
|
16 |
# http://stackoverflow.com/questions/497685/how-do-you-get-around-the-maximum-cuda-run-time
|
17 |
# Option "Interactive" "0" in /etc/X11/xorg.conf
|
18 |
|
19 |
# Common tools
|
20 |
import numpy |
21 |
from numpy.random import randint as nprnd |
22 |
import sys |
23 |
import getopt |
24 |
import time |
25 |
import math |
26 |
import itertools |
27 |
from socket import gethostname |
28 |
|
29 |
from threading import Thread |
30 |
|
31 |
class threadWithReturn(Thread): |
32 |
def __init__(self, *args, **kwargs): |
33 |
super(threadWithReturn, self).__init__(*args, **kwargs) |
34 |
|
35 |
self._return = None |
36 |
|
37 |
def run(self): |
38 |
if self._Thread__target is not None: |
39 |
self._return = self._Thread__target(*self._Thread__args, **self._Thread__kwargs) |
40 |
|
41 |
def join(self, *args, **kwargs): |
42 |
super(threadWithReturn, self).join(*args, **kwargs) |
43 |
|
44 |
return self._return |
45 |
|
46 |
from PiXPU import * |
47 |
|
48 |
if __name__=='__main__': |
49 |
|
50 |
# MPI Init
|
51 |
comm = MPI.COMM_WORLD |
52 |
rank = comm.Get_rank() |
53 |
|
54 |
# Define number of Nodes on with computing is performed (exclude 0)
|
55 |
RankSize=comm.Get_size() |
56 |
|
57 |
if rank == 0: |
58 |
|
59 |
# Set defaults values
|
60 |
|
61 |
# Id of Device : 1 is for first find !
|
62 |
Device=1
|
63 |
# GPU style can be Cuda (Nvidia implementation) or OpenCL
|
64 |
GpuStyle='OpenCL'
|
65 |
# Iterations is integer
|
66 |
Iterations=10000000
|
67 |
# BlocksBlocks in first number of Blocks to explore
|
68 |
BlocksBegin=1
|
69 |
# BlocksEnd is last number of Blocks to explore
|
70 |
BlocksEnd=16
|
71 |
# BlocksStep is the step of Blocks to explore
|
72 |
BlocksStep=1
|
73 |
# ThreadsBlocks in first number of Blocks to explore
|
74 |
ThreadsBegin=1
|
75 |
# ThreadsEnd is last number of Blocks to explore
|
76 |
ThreadsEnd=1
|
77 |
# ThreadsStep is the step of Blocks to explore
|
78 |
ThreadsStep=1
|
79 |
# Redo is the times to redo the test to improve metrology
|
80 |
Redo=1
|
81 |
# OutMetrology is method for duration estimation : False is GPU inside
|
82 |
OutMetrology=False
|
83 |
Metrology='InMetro'
|
84 |
# Curves is True to print the curves
|
85 |
Curves=False
|
86 |
# Fit is True to print the curves
|
87 |
Fit=False
|
88 |
# Marsaglia RNG
|
89 |
RNG='MWC'
|
90 |
# Value type : INT32, INT64, FP32, FP64
|
91 |
ValueType='FP32'
|
92 |
|
93 |
HowToUse='%s -o (Out of Core Metrology) -c (Print Curves) -d <DeviceId> -g <CUDA/OpenCL> -i <Iterations> -b <BlocksBegin> -e <BlocksEnd> -s <BlocksStep> -f <ThreadsFirst> -l <ThreadsLast> -t <ThreadssTep> -r <RedoToImproveStats> -m <SHR3/CONG/MWC/KISS> -v <INT32/INT64/FP32/FP64>'
|
94 |
|
95 |
try:
|
96 |
opts, args = getopt.getopt(sys.argv[1:],"hocg:i:b:e:s:f:l:t:r:d:m:v:",["gpustyle=","iterations=","blocksBegin=","blocksEnd=","blocksStep=","threadsFirst=","threadsLast=","threadssTep=","redo=","device=","marsaglia=","valuetype="]) |
97 |
except getopt.GetoptError:
|
98 |
print HowToUse % sys.argv[0] |
99 |
sys.exit(2)
|
100 |
|
101 |
# List of Devices
|
102 |
Devices=[] |
103 |
Alu={} |
104 |
|
105 |
for opt, arg in opts: |
106 |
if opt == '-h': |
107 |
print HowToUse % sys.argv[0] |
108 |
|
109 |
print "\nInformations about devices detected under OpenCL:" |
110 |
# For PyOpenCL import
|
111 |
try:
|
112 |
import pyopencl as cl |
113 |
Id=1
|
114 |
for platform in cl.get_platforms(): |
115 |
for device in platform.get_devices(): |
116 |
deviceType=cl.device_type.to_string(device.type) |
117 |
print "Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()) |
118 |
Id=Id+1
|
119 |
|
120 |
print
|
121 |
sys.exit() |
122 |
except ImportError: |
123 |
print "Your platform does not seem to support OpenCL" |
124 |
|
125 |
elif opt == '-o': |
126 |
OutMetrology=True
|
127 |
Metrology='OutMetro'
|
128 |
elif opt == '-c': |
129 |
Curves=True
|
130 |
elif opt in ("-d", "--device"): |
131 |
Devices.append(int(arg))
|
132 |
elif opt in ("-g", "--gpustyle"): |
133 |
GpuStyle = arg |
134 |
elif opt in ("-m", "--marsaglia"): |
135 |
RNG = arg |
136 |
elif opt in ("-v", "--valuetype"): |
137 |
ValueType = arg |
138 |
elif opt in ("-i", "--iterations"): |
139 |
Iterations = numpy.uint64(arg) |
140 |
elif opt in ("-b", "--blocksbegin"): |
141 |
BlocksBegin = int(arg)
|
142 |
elif opt in ("-e", "--blocksend"): |
143 |
BlocksEnd = int(arg)
|
144 |
elif opt in ("-s", "--blocksstep"): |
145 |
BlocksStep = int(arg)
|
146 |
elif opt in ("-f", "--threadsfirst"): |
147 |
ThreadsBegin = int(arg)
|
148 |
elif opt in ("-l", "--threadslast"): |
149 |
ThreadsEnd = int(arg)
|
150 |
elif opt in ("-t", "--threadsstep"): |
151 |
ThreadsStep = int(arg)
|
152 |
elif opt in ("-r", "--redo"): |
153 |
Redo = int(arg)
|
154 |
|
155 |
print "Devices Identification : %s" % Devices |
156 |
print "GpuStyle used : %s" % GpuStyle |
157 |
print "Iterations : %s" % Iterations |
158 |
print "Number of Blocks on begin : %s" % BlocksBegin |
159 |
print "Number of Blocks on end : %s" % BlocksEnd |
160 |
print "Step on Blocks : %s" % BlocksStep |
161 |
print "Number of Threads on begin : %s" % ThreadsBegin |
162 |
print "Number of Threads on end : %s" % ThreadsEnd |
163 |
print "Step on Threads : %s" % ThreadsStep |
164 |
print "Number of redo : %s" % Redo |
165 |
print "Metrology done out of XPU : %r" % OutMetrology |
166 |
print "Type of Marsaglia RNG used : %s" % RNG |
167 |
print "Type of variable : %s" % ValueType |
168 |
|
169 |
if GpuStyle=='CUDA': |
170 |
try:
|
171 |
# For PyCUDA import
|
172 |
import pycuda.driver as cuda |
173 |
import pycuda.gpuarray as gpuarray |
174 |
import pycuda.autoinit |
175 |
from pycuda.compiler import SourceModule |
176 |
except ImportError: |
177 |
print "Platform does not seem to support CUDA" |
178 |
|
179 |
if GpuStyle=='OpenCL': |
180 |
try:
|
181 |
# For PyOpenCL import
|
182 |
import pyopencl as cl |
183 |
Id=1
|
184 |
for platform in cl.get_platforms(): |
185 |
for device in platform.get_devices(): |
186 |
deviceType=cl.device_type.to_string(device.type) |
187 |
print "Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()) |
188 |
|
189 |
if Id in Devices: |
190 |
# Set the Alu as detected Device Type
|
191 |
Alu[Id]=deviceType |
192 |
Id=Id+1
|
193 |
except ImportError: |
194 |
print "Platform does not seem to support OpenCL" |
195 |
|
196 |
print Devices,Alu
|
197 |
|
198 |
BlocksList=xrange(BlocksBegin,BlocksEnd+BlocksStep,BlocksStep)
|
199 |
ThreadsList=xrange(ThreadsBegin,ThreadsEnd+ThreadsStep,ThreadsStep)
|
200 |
|
201 |
ExploredJobs=numpy.array([]).astype(numpy.uint32) |
202 |
ExploredBlocks=numpy.array([]).astype(numpy.uint32) |
203 |
ExploredThreads=numpy.array([]).astype(numpy.uint32) |
204 |
avgD=numpy.array([]).astype(numpy.float32) |
205 |
medD=numpy.array([]).astype(numpy.float32) |
206 |
stdD=numpy.array([]).astype(numpy.float32) |
207 |
minD=numpy.array([]).astype(numpy.float32) |
208 |
maxD=numpy.array([]).astype(numpy.float32) |
209 |
avgR=numpy.array([]).astype(numpy.float32) |
210 |
medR=numpy.array([]).astype(numpy.float32) |
211 |
stdR=numpy.array([]).astype(numpy.float32) |
212 |
minR=numpy.array([]).astype(numpy.float32) |
213 |
maxR=numpy.array([]).astype(numpy.float32) |
214 |
|
215 |
for Blocks,Threads in itertools.product(BlocksList,ThreadsList): |
216 |
|
217 |
# print Blocks,Threads
|
218 |
circle=numpy.zeros(Blocks*Threads).astype(numpy.uint64) |
219 |
ExploredJobs=numpy.append(ExploredJobs,Blocks*Threads) |
220 |
ExploredBlocks=numpy.append(ExploredBlocks,Blocks) |
221 |
ExploredThreads=numpy.append(ExploredThreads,Threads) |
222 |
|
223 |
if OutMetrology:
|
224 |
DurationItem=numpy.array([]).astype(numpy.float32) |
225 |
Duration=numpy.array([]).astype(numpy.float32) |
226 |
Rate=numpy.array([]).astype(numpy.float32) |
227 |
for i in range(Redo): |
228 |
start=time.time() |
229 |
if GpuStyle=='CUDA': |
230 |
try:
|
231 |
Inside,NewIterations,DurationItem=MetropolisCuda(circle,Iterations,1,Blocks,Threads,RNG,ValueType)
|
232 |
except:
|
233 |
print "Problem with (%i,%i) // computations on Cuda" % (Blocks,Threads) |
234 |
elif GpuStyle=='OpenCL': |
235 |
try:
|
236 |
MetroParamCL={} |
237 |
MetroParamCL['Iterations']=Iterations
|
238 |
MetroParamCL['Steps']=1 |
239 |
MetroParamCL['Blocks']=Blocks
|
240 |
MetroParamCL['Threads']=Threads
|
241 |
MetroParamCL['Device']=Devices[0] |
242 |
MetroParamCL['RNG']=RNG
|
243 |
MetroParamCL['ValueType']=ValueType
|
244 |
|
245 |
OutputCL=MetropolisOpenCL(MetroParamCL) |
246 |
except:
|
247 |
print "Problem with (%i,%i) // computations on OpenCL" % (Blocks,Threads) |
248 |
Duration=numpy.append(Duration,time.time()-start) |
249 |
Rate=numpy.append(Rate,NewIterations/Duration[-1])
|
250 |
else:
|
251 |
if GpuStyle=='CUDA': |
252 |
try:
|
253 |
Inside,NewIterations,Duration=MetropolisCuda(circle,Iterations,Redo,Blocks,Threads,RNG,ValueType) |
254 |
except:
|
255 |
print "Problem with (%i,%i) // computations on Cuda" % (Blocks,Threads) |
256 |
elif GpuStyle=='OpenCL': |
257 |
try:
|
258 |
IterationsMPI=numpy.uint64(Iterations/len(Devices))
|
259 |
if Iterations%len(Devices)!=0: |
260 |
IterationsMPI+=1
|
261 |
|
262 |
r=1
|
263 |
time_start=time.time() |
264 |
for Device in Devices: |
265 |
InputCL={} |
266 |
InputCL['Iterations']=IterationsMPI
|
267 |
InputCL['Steps']=Redo
|
268 |
InputCL['Blocks']=Blocks
|
269 |
InputCL['Threads']=Threads
|
270 |
InputCL['Device']=Device
|
271 |
InputCL['RNG']=RNG
|
272 |
InputCL['ValueType']=ValueType
|
273 |
print "Send to device %i on rank %i" % (Device,r) |
274 |
comm.send('CONTINUE',dest=r,tag=11) |
275 |
comm.send(InputCL,dest=r,tag=11)
|
276 |
r+=1
|
277 |
|
278 |
Inside=0
|
279 |
NewIterations=0
|
280 |
for slave in xrange(1,len(Devices)+1): |
281 |
print "slave %i" % slave |
282 |
OutputCL=comm.recv(source=slave,tag=11)
|
283 |
print "OutputCL from rank %s %s" % (slave,OutputCL) |
284 |
NewIterations+=OutputCL['NewIterations']
|
285 |
Inside+=OutputCL['Inside']
|
286 |
|
287 |
Duration=time.time()-time_start |
288 |
print "Pi estimation %.8f" % (4./NewIterations*Inside) |
289 |
except:
|
290 |
print "Problem with (%i,%i) // computations on OpenCL" % (Blocks,Threads) |
291 |
Duration=OutputCL['Duration']
|
292 |
NewIterations=OutputCL['NewIterations']
|
293 |
Rate=NewIterations/Duration |
294 |
|
295 |
avgD=numpy.append(avgD,numpy.average(Duration)) |
296 |
medD=numpy.append(medD,numpy.median(Duration)) |
297 |
stdD=numpy.append(stdD,numpy.std(Duration)) |
298 |
minD=numpy.append(minD,numpy.min(Duration)) |
299 |
maxD=numpy.append(maxD,numpy.max(Duration)) |
300 |
avgR=numpy.append(avgR,numpy.average(Rate)) |
301 |
medR=numpy.append(medR,numpy.median(Rate)) |
302 |
stdR=numpy.append(stdR,numpy.std(Rate)) |
303 |
minR=numpy.append(minR,numpy.min(Rate)) |
304 |
maxR=numpy.append(maxR,numpy.max(Rate)) |
305 |
|
306 |
print "%.2f %.2f %.2f %.2f %.2f %i %i %i %i %i" % (avgD[-1],medD[-1],stdD[-1],minD[-1],maxD[-1],avgR[-1],medR[-1],stdR[-1],minR[-1],maxR[-1]) |
307 |
|
308 |
numpy.savez("Pi_%s_%s_%s_%s_%s_%s_%s_%s_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu[Devices[0]],GpuStyle,BlocksBegin,BlocksEnd,ThreadsBegin,ThreadsEnd,Iterations,Devices[0],Metrology,gethostname()),(ExploredBlocks,ExploredThreads,avgD,medD,stdD,minD,maxD,avgR,medR,stdR,minR,maxR)) |
309 |
ToSave=[ ExploredBlocks,ExploredThreads,avgD,medD,stdD,minD,maxD,avgR,medR,stdR,minR,maxR ] |
310 |
numpy.savetxt("Pi_%s_%s_%s_%s_%s_%s_%s_%i_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu[Devices[0]],GpuStyle,BlocksBegin,BlocksEnd,ThreadsBegin,ThreadsEnd,Iterations,Devices[0],Metrology,gethostname()),numpy.transpose(ToSave),fmt='%i %i %e %e %e %e %e %i %i %i %i %i') |
311 |
|
312 |
if Fit:
|
313 |
FitAndPrint(ExploredJobs,median,Curves) |
314 |
# Send MPI exit tag
|
315 |
for slave in xrange(1,RankSize): |
316 |
comm.send('BREAK',dest=slave,tag=11) |
317 |
|
318 |
else:
|
319 |
while True: |
320 |
Signal=comm.recv(source=0,tag=11) |
321 |
if Signal=='CONTINUE': |
322 |
# Receive information from Master
|
323 |
InputCL=comm.recv(source=0,tag=11) |
324 |
print "Parameters retreive from master %s " % InputCL |
325 |
# Execute on slave
|
326 |
OutputCL=MetropolisOpenCL(InputCL) |
327 |
print OutputCL
|
328 |
# Send information to Master
|
329 |
comm.send(OutputCL,dest=0,tag=11) |
330 |
print "Data sent to master" |
331 |
else:
|
332 |
print 'Exit signal from Master' |
333 |
break
|