Révision 234

TrouNoir/TrouNoir.py (revision 234)
1 1
#!/usr/bin/env python
2 2
#
3
# TrouNoir model using PyOpenCL 
3
# TrouNoir model using PyOpenCL
4 4
#
5
# CC BY-NC-SA 2019 : <emmanuel.quemener@ens-lyon.fr> 
5
# CC BY-NC-SA 2019 : <emmanuel.quemener@ens-lyon.fr>
6 6
#
7 7
# Thanks to Andreas Klockner for PyOpenCL:
8 8
# http://mathema.tician.de/software/pyopencl
9
# 
9
#
10 10
# Original code programmed in Fortran 77 in mars 1994
11 11
# for Practical Work of Numerical Simulation
12 12
# DEA (old Master2) in astrophysics and spatial techniques in Meudon
......
17 17
# GPUfication in CUDA under Python in august 2019
18 18
#
19 19
# Thanks to :
20
# 
20
#
21 21
# - Herve Aussel for his part of code of black body spectrum
22 22
# - Didier Pelat for his help to perform this work
23 23
# - Jean-Pierre Luminet for his article published in 1979
......
102 102

  
103 103
BlobOpenCL= """
104 104

  
105
#define PI (float)3.14159265359
105
#define PI (float)3.14159265359e0f
106 106
#define nbr 256
107 107

  
108 108
#define EINSTEIN 0
......
146 146
#endif
147 147

  
148 148
void calcul(float *us,float *vs,float up,float vp,
149
	    float h,float m,float b)
149
            float h,float m,float b)
150 150
{
151 151
  float c0,c1,c2,c3,d0,d1,d2,d3;
152 152

  
153 153
  c0=h*f(vp);
154
  c1=h*f(vp+c0/2.);
155
  c2=h*f(vp+c1/2.);
154
  c1=h*f(vp+c0/2.e0f);
155
  c2=h*f(vp+c1/2.e0f);
156 156
  c3=h*f(vp+c2);
157 157
  d0=h*g(up,m,b);
158
  d1=h*g(up+d0/2.,m,b);
159
  d2=h*g(up+d1/2.,m,b);
158
  d1=h*g(up+d0/2.e0f,m,b);
159
  d2=h*g(up+d1/2.e0f,m,b);
160 160
  d3=h*g(up+d2,m,b);
161 161

  
162
  *us=up+(c0+2.*c1+2.*c2+c3)/6.;
163
  *vs=vp+(d0+2.*d1+2.*d2+d3)/6.;
162
  *us=up+(c0+2.e0f*c1+2.e0f*c2+c3)/6.e0f;
163
  *vs=vp+(d0+2.e0f*d1+2.e0f*d2+d3)/6.e0f;
164 164
}
165 165

  
166 166
void rungekutta(float *ps,float *us,float *vs,
167
		float pp,float up,float vp,
168
		float h,float m,float b)
167
                float pp,float up,float vp,
168
                float h,float m,float b)
169 169
{
170 170
  calcul(us,vs,up,vp,h,m,b);
171 171
  *ps=pp+h;
172 172
}
173 173

  
174 174
float decalage_spectral(float r,float b,float phi,
175
			 float tho,float m)
175
                        float tho,float m)
176 176
{
177 177
  return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi)));
178 178
}
179 179

  
180 180
float spectre(float rf,int q,float b,float db,
181
	     float h,float r,float m,float bss)
181
              float h,float r,float m,float bss)
182 182
{
183 183
  float flx;
184 184

  
185 185
//  flx=exp(q*log(r/m))*pow(rf,4)*b*db*h;
186
  flx=exp(q*log(r/m)+4.*log(rf))*b*db*h;
186
  flx=exp(q*log(r/m)+4.e0f*log(rf))*b*db*h;
187 187
  return(flx);
188 188
}
189 189

  
190 190
float spectre_cn(float rf32,float b32,float db32,
191
		 float h32,float r32,float m32,float bss32)
191
                 float h32,float r32,float m32,float bss32)
192 192
{
193
  
193

  
194 194
#define MYFLOAT float
195 195

  
196 196
  MYFLOAT rf=(MYFLOAT)(rf32);
......
205 205
  MYFLOAT nu_rec,nu_em,qu,temp_em,flux_int;
206 206
  int fi,posfreq;
207 207

  
208
#define planck 6.62e-34
209
#define k 1.38e-23
210
#define c2 9.e16
211
#define temp 3.e7
212
#define m_point 1.
208
#define planck 6.62e-34f
209
#define k 1.38e-23f
210
#define c2 9.e16f
211
#define temp 3.e7f
212
#define m_point 1.e0f
213 213

  
214
#define lplanck (log(6.62)-34.*log(10.))
215
#define lk (log(1.38)-23.*log(10.))
216
#define lc2 (log(9.)+16.*log(10.))
214
#define lplanck (log(6.62e0f)-34.e0f*log(10.e0f))
215
#define lk (log(1.38e0f)-23.e0f*log(10.e0f))
216
#define lc2 (log(9.e0f)+16.e0f*log(10.e0f))
217 217

  
218
  MYFLOAT v=1.-3./r;
218
  MYFLOAT v=1.e0f-3.e0f/r;
219 219

  
220
  qu=1./sqrt((1.-3./r)*r)*(sqrt(r)-sqrt(6.)+sqrt(3.)/2.*log((sqrt(r)+sqrt(3.))/(sqrt(r)-sqrt(3.))* 0.17157287525380988 ));
220
  qu=1.e0f/sqrt((1.e0f-3.e0f/r)*r)*(sqrt(r)-sqrt(6.e0f)+sqrt(3.e0f)/2.e0f*log((sqrt(r)+sqrt(3.e0f))/(sqrt(r)-sqrt(3.e0f))* 0.17157287525380988e0f ));
221 221

  
222
  temp_em=temp*sqrt(m)*exp(0.25*log(m_point)-0.75*log(r)-0.125*log(v)+0.25*log(fabs(qu)));
222
  temp_em=temp*sqrt(m)*exp(0.25e0f*log(m_point)-0.75e0f*log(r)-0.125e0f*log(v)+0.25e0f*log(fabs(qu)));
223 223

  
224
  flux_int=0.;
225
  flx=0.;
224
  flux_int=0.e0f;
225
  flx=0.e0f;
226 226

  
227 227
  for (fi=0;fi<nbr;fi++)
228 228
    {
......
230 230
      nu_rec=nu_em*rf;
231 231
      posfreq=(int)(nu_rec*(MYFLOAT)nbr/bss);
232 232
      if ((posfreq>0)&&(posfreq<nbr))
233
	{
233
        {
234 234
          // Initial version
235
	  // flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.);
235
          // flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.);
236 236
          // Version with log used
237
	  //flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.);
238
	  // flux_int*=pow(rf,3)*b*db*h;
239
	  //flux_int*=exp(3.*log(rf))*b*db*h;
240
	  flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.)*exp(3.*log(rf))*b*db*h;
237
          //flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.);
238
          // flux_int*=pow(rf,3)*b*db*h;
239
          //flux_int*=exp(3.e0f*log(rf))*b*db*h;
240
          flux_int=2.e0f*exp(lplanck-lc2+3.e0f*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.e0f)*exp(3.e0f*log(rf))*b*db*h;
241 241

  
242
	  flx+=flux_int;
243
	}
242
          flx+=flux_int;
243
        }
244 244
    }
245 245

  
246 246
  return((float)(flx));
247 247
}
248 248

  
249 249
void impact(float phi,float r,float b,float tho,float m,
250
	    float *zp,float *fp,
251
	    int q,float db,
252
	    float h,int raie)
250
            float *zp,float *fp,
251
            int q,float db,
252
            float h,int raie)
253 253
{
254 254
  float flx,rf,bss;
255 255

  
......
257 257

  
258 258
  if (raie==0)
259 259
    {
260
      bss=1.e19;
260
      bss=1.e19f;
261 261
      flx=spectre_cn(rf,b,db,h,r,m,bss);
262 262
    }
263 263
  else
264
    { 
265
      bss=2.;
264
    {
265
      bss=2.e0f;
266 266
      flx=spectre(rf,q,b,db,h,r,m,bss);
267 267
    }
268
  
269
  *zp=1./rf;
268

  
269
  *zp=1.e0f/rf;
270 270
  *fp=flx;
271 271

  
272 272
}
......
295 295
  raie=Line;
296 296

  
297 297
  float bmx,db,b,h;
298
  float rp0,rpp,rps;
298
  float rp0,rps;
299 299
  float phi,phd;
300 300
  uint nh=0;
301 301
  float zp=0.e0f,fp=0.e0f;
......
356 356
  barrier(CLK_GLOBAL_MEM_FENCE);
357 357

  
358 358
  zImage[yi+sizex*xi]=(float)zp;
359
  fImage[yi+sizex*xi]=(float)fp;  
359
  fImage[yi+sizex*xi]=(float)fp;
360 360
}
361 361

  
362 362
__kernel void Pixel(__global float *zImage,__global float *fImage,
......
385 385

  
386 386
  float bmx,db,b,h;
387 387
  float phi,phd,php,nr,r;
388
  float zp=0.,fp=0.;
388
  float zp=0.e0f,fp=0.e0f;
389 389

  
390 390
  // Autosize for image, 25% greater than external radius
391
  bmx=1.25*re;
391
  bmx=1.25e0f*re;
392 392

  
393 393
  // Angular step of integration
394 394
  h=4.e0f*PI/(float)TRACKPOINTS;
395 395

  
396 396
  // Step of Impact Parameter
397
  db=bmx/(2.e0*(float)ImpactParameter);
397
  db=bmx/(2.e0f*(float)ImpactParameter);
398 398

  
399 399
  // set origin as center of image
400
  float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
401
  float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
400
  float x=(float)xi-(float)(sizex/2)+(float)5.e-1f;
401
  float y=(float)yi-(float)(sizey/2)+(float)5.e-1f;
402 402

  
403 403
  // angle extracted from cylindric symmetry
404 404
  phi=atanp(x,y);
......
422 422

  
423 423
      if (ni<IdLast[bi])
424 424
      {
425
        r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.)+Trajectories[bi*TRACKPOINTS+ni];
425
        r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.e0f)+Trajectories[bi*TRACKPOINTS+ni];
426 426
      }
427 427
      else
428 428
      {
429 429
        r=Trajectories[bi*TRACKPOINTS+ni];
430 430
      }
431
	   
431

  
432 432
      if ((r<=re)&&(r>=ri))
433 433
      {
434 434
        ExitOnImpact=1;
435 435
        impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
436 436
      }
437
	      
437

  
438 438
      HalfLap++;
439 439
    } while ((HalfLap<=2)&&(ExitOnImpact==0));
440 440

  
......
452 452
                     float ExternalRadius,float Angle,
453 453
                     int Line)
454 454
{
455
   // Integer Impact Parameter ID 
455
   // Integer Impact Parameter ID
456 456
   int bi=get_global_id(0);
457 457
   // Integer points on circle
458 458
   int i=get_global_id(1);
......
474 474

  
475 475
  float bmx,db,b,h;
476 476
  float phi,phd;
477
  float zp=0,fp=0;
477
  float zp=0.e0f,fp=0.e0f;
478 478

  
479 479
  // Autosize for image
480
  bmx=1.25*re;
480
  bmx=1.25e0f*re;
481 481

  
482 482
  // Angular step of integration
483 483
  h=4.e0f*PI/(float)TRACKPOINTS;
......
486 486
  b=(float)bi/(float)bmaxi*bmx;
487 487
  db=bmx/(2.e0f*(float)bmaxi);
488 488

  
489
  phi=2.*PI/(float)imx*(float)i;
489
  phi=2.e0f*PI/(float)imx*(float)i;
490 490
  phd=atanp(cos(phi)*sin(tho),cos(tho));
491 491
  int yi=(int)((float)bi*sin(phi))+bmaxi;
492 492
  int xi=(int)((float)bi*cos(phi))+bmaxi;
......
502 502

  
503 503
     if (ni<IdLast[bi])
504 504
     {
505
        r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.)+Trajectories[bi*TRACKPOINTS+ni];
505
        r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.e0f)+Trajectories[bi*TRACKPOINTS+ni];
506 506
     }
507 507
     else
508 508
     {
509
	r=Trajectories[bi*TRACKPOINTS+ni];
509
        r=Trajectories[bi*TRACKPOINTS+ni];
510 510
     }
511
	   
511

  
512 512
     if ((r<=re)&&(r>=ri))
513 513
     {
514
	ExitOnImpact=1;
515
	impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
514
        ExitOnImpact=1;
515
        impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
516 516
     }
517
	      
517

  
518 518
     HalfLap++;
519 519
  } while ((HalfLap<=2)&&(ExitOnImpact==0));
520
  
520

  
521 521
  zImage[yi+2*bmaxi*xi]=zp;
522
  fImage[yi+2*bmaxi*xi]=fp;  
522
  fImage[yi+2*bmaxi*xi]=fp;
523 523

  
524 524
  barrier(CLK_GLOBAL_MEM_FENCE);
525 525

  
......
530 530
                         float ExternalRadius,float Angle,
531 531
                         int Line)
532 532
{
533
  // Integer Impact Parameter ID 
533
  // Integer Impact Parameter ID
534 534
  int bi=get_global_id(0);
535 535
  // Integer Impact Parameter Size (half of image)
536 536
  int bmaxi=get_global_size(0);
......
540 540
  float m,rs,re;
541 541

  
542 542
  m=Mass;
543
  rs=2.*m;
543
  rs=2.e0f*m;
544 544
  re=ExternalRadius;
545 545

  
546 546
  float bmx,b,h;
547 547
  int nh;
548 548

  
549 549
  // Autosize for image
550
  bmx=1.25*re;
550
  bmx=1.25e0f*re;
551 551

  
552 552
  // Angular step of integration
553 553
  h=4.e0f*PI/(float)TRACKPOINTS;
......
557 557

  
558 558
  float up,vp,pp,us,vs,ps;
559 559

  
560
  up=0.;
561
  vp=1.;
562
      
563
  pp=0.;
560
  up=0.e0f;
561
  vp=1.e0f;
562

  
563
  pp=0.e0f;
564 564
  nh=0;
565 565

  
566 566
  rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
567
  
567

  
568 568
  // b versus us
569 569
  float bvus=fabs(b/us);
570 570
  float bvus0=bvus;
......
585 585
  IdLast[bi]=nh;
586 586

  
587 587
  barrier(CLK_GLOBAL_MEM_FENCE);
588
 
588

  
589 589
}
590 590

  
591 591
__kernel void EachCircle(__global float *zImage,__global float *fImage,
......
593 593
                         float ExternalRadius,float Angle,
594 594
                         int Line)
595 595
{
596
  // Integer Impact Parameter ID 
597
  int bi=get_global_id(0);
598
  // Integer Impact Parameter Size (half of image)
599
  int bmaxi=get_global_size(0);
596
   // Integer Impact Parameter ID
597
   uint bi=(uint)get_global_id(0);
598
   // Integer Impact Parameter Size (half of image)
599
   uint bmaxi=(uint)get_global_size(0);
600 600

  
601
  float Trajectory[TRACKPOINTS];
601
  private float Trajectory[TRACKPOINTS];
602 602

  
603 603
  float m,rs,ri,re,tho;
604 604
  int raie,q;
605 605

  
606 606
  m=Mass;
607
  rs=2.*m;
607
  rs=2.e0f*m;
608 608
  ri=InternalRadius;
609 609
  re=ExternalRadius;
610 610
  tho=Angle;
......
612 612
  raie=Line;
613 613

  
614 614
  float bmx,db,b,h;
615
  int nh;
615
  uint nh;
616 616

  
617

  
617 618
  // Autosize for image
618 619
  bmx=1.25e0f*re;
619 620

  
......
626 627

  
627 628
  float up,vp,pp,us,vs,ps;
628 629

  
629
  up=0.;
630
  vp=1.;
631
      
632
  pp=0.;
630
  up=0.e0f;
631
  vp=1.e0f;
632

  
633
  pp=0.e0f;
633 634
  nh=0;
634 635

  
635 636
  rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
636
  
637

  
637 638
  // b versus us
638 639
  float bvus=fabs(b/us);
639 640
  float bvus0=bvus;
......
646 647
     up=us;
647 648
     vp=vs;
648 649
     rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
649
     bvus=fabs(b/us);
650
     bvus=(float)fabs(b/us);
650 651
     Trajectory[nh]=bvus;
651 652

  
652 653
  } while ((bvus>=rs)&&(bvus<=bvus0));
653 654

  
655

  
654 656
  for (uint i=(uint)nh+1;i<TRACKPOINTS;i++) {
655 657
     Trajectory[i]=0.e0f;
656 658
  }
657 659

  
658
  int imx=(int)(16*bi);
659 660

  
660
  for (int i=0;i<imx;i++)
661
  uint imx=(uint)(16*bi);
662

  
663
  for (uint i=0;i<imx;i++)
661 664
  {
662
     float zp=0.,fp=0.;
663
     float phi=2.*PI/(float)imx*(float)i;
665
     float zp=0.e0f,fp=0.e0f;
666
     float phi=2.e0f*PI/(float)imx*(float)i;
664 667
     float phd=atanp(cos(phi)*sin(tho),cos(tho));
665 668
     uint yi=(uint)((float)bi*sin(phi)+bmaxi);
666 669
     uint xi=(uint)((float)bi*cos(phi)+bmaxi);
667 670

  
668
     int HalfLap=0,ExitOnImpact=0,ni;
671
     uint HalfLap=0,ExitOnImpact=0,ni;
669 672
     float php,nr,r;
670 673

  
671 674
     do
......
676 679

  
677 680
        if (ni<nh)
678 681
        {
679
           r=(Trajectory[ni+1]-Trajectory[ni])*(nr-ni*1.)+Trajectory[ni];
682
           r=(Trajectory[ni+1]-Trajectory[ni])*(nr-ni*1.e0f)+Trajectory[ni];
680 683
        }
681 684
        else
682 685
        {
683 686
           r=Trajectory[ni];
684 687
        }
685
	   
688

  
686 689
        if ((r<=re)&&(r>=ri))
687 690
        {
688 691
           ExitOnImpact=1;
689 692
           impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
690 693
        }
691
	      
694

  
692 695
        HalfLap++;
693 696

  
694 697
     } while ((HalfLap<=2)&&(ExitOnImpact==0));
695
 
698

  
696 699
     zImage[yi+2*bmaxi*xi]=zp;
697 700
     fImage[yi+2*bmaxi*xi]=fp;
698 701

  
699 702
  }
700 703

  
701 704
  barrier(CLK_GLOBAL_MEM_FENCE);
702
 
705

  
703 706
}
704 707

  
705 708
__kernel void Original(__global float *zImage,__global float *fImage,
......
718 721
   int raie,q;
719 722

  
720 723
   m=Mass;
721
   rs=2.*m;
724
   rs=2.e0f*m;
722 725
   ri=InternalRadius;
723 726
   re=ExternalRadius;
724 727
   tho=Angle;
......
726 729
   raie=Line;
727 730

  
728 731
   float bmx,db,b,h;
729
   int nh;
732
   uint nh;
730 733

  
731 734
   // Autosize for image
732 735
   bmx=1.25e0f*re;
......
734 737
   // Angular step of integration
735 738
   h=4.e0f*PI/(float)TRACKPOINTS;
736 739

  
737
   // Integer Impact Parameter ID 
740
   // Integer Impact Parameter ID
738 741
   for (int bi=0;bi<bmaxi;bi++)
739 742
   {
740 743
      // impact parameter
......
743 746

  
744 747
      float up,vp,pp,us,vs,ps;
745 748

  
746
      up=0.;
747
      vp=1.;
748
      
749
      pp=0.;
749
      up=0.e0f;
750
      vp=1.e0f;
751

  
752
      pp=0.e0f;
750 753
      nh=0;
751 754

  
752 755
      rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
753
  
756

  
754 757
      // b versus us
755 758
      float bvus=fabs(b/us);
756 759
      float bvus0=bvus;
......
776 779

  
777 780
      for (int i=0;i<imx;i++)
778 781
      {
779
         float zp=0,fp=0;
782
         float zp=0.e0f,fp=0.e0f;
780 783
         float phi=2.e0f*PI/(float)imx*(float)i;
781 784
         float phd=atanp(cos(phi)*sin(tho),cos(tho));
782 785
         uint yi=(uint)((float)bi*sin(phi)+bmaxi);
783 786
         uint xi=(uint)((float)bi*cos(phi)+bmaxi);
784 787

  
785
         int HalfLap=0,ExitOnImpact=0,ni;
788
         uint HalfLap=0,ExitOnImpact=0,ni;
786 789
         float php,nr,r;
787 790

  
788 791
         do
......
793 796

  
794 797
            if (ni<nh)
795 798
            {
796
               r=(Trajectory[ni+1]-Trajectory[ni])*(nr-ni*1.)+Trajectory[ni];
799
               r=(Trajectory[ni+1]-Trajectory[ni])*(nr-ni*1.e0f)+Trajectory[ni];
797 800
            }
798 801
            else
799 802
            {
800 803
               r=Trajectory[ni];
801 804
            }
802
	   
805

  
803 806
            if ((r<=re)&&(r>=ri))
804 807
            {
805 808
               ExitOnImpact=1;
806 809
               impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
807 810
            }
808
 	      
811

  
809 812
            HalfLap++;
810
 
813

  
811 814
         } while ((HalfLap<=2)&&(ExitOnImpact==0));
812
  
815

  
813 816
         zImage[yi+2*bmaxi*xi]=zp;
814 817
         fImage[yi+2*bmaxi*xi]=fp;
815
  
818

  
816 819
      }
817 820

  
818
   } 
819
   
821
   }
822

  
820 823
   barrier(CLK_GLOBAL_MEM_FENCE);
821
 
824

  
822 825
}
823 826
"""
824 827

  
......
874 877
#endif
875 878

  
876 879
__device__ void calcul(float *us,float *vs,float up,float vp,
877
	               float h,float m,float b)
880
                       float h,float m,float b)
878 881
{
879 882
  float c0,c1,c2,c3,d0,d1,d2,d3;
880 883

  
......
892 895
}
893 896

  
894 897
__device__ void rungekutta(float *ps,float *us,float *vs,
895
	                   float pp,float up,float vp,
896
		           float h,float m,float b)
898
                           float pp,float up,float vp,
899
                           float h,float m,float b)
897 900
{
898 901
  calcul(us,vs,up,vp,h,m,b);
899 902
  *ps=pp+h;
900 903
}
901 904

  
902 905
__device__ float decalage_spectral(float r,float b,float phi,
903
			           float tho,float m)
906
                                   float tho,float m)
904 907
{
905 908
  return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi)));
906 909
}
907 910

  
908 911
__device__ float spectre(float rf,int q,float b,float db,
909
	                 float h,float r,float m,float bss)
912
                         float h,float r,float m,float bss)
910 913
{
911 914
  float flx;
912 915

  
......
916 919
}
917 920

  
918 921
__device__ float spectre_cn(float rf32,float b32,float db32,
919
		            float h32,float r32,float m32,float bss32)
922
                            float h32,float r32,float m32,float bss32)
920 923
{
921
  
924

  
922 925
#define MYFLOAT float
923 926

  
924 927
  MYFLOAT rf=(MYFLOAT)(rf32);
......
958 961
      nu_rec=nu_em*rf;
959 962
      posfreq=(int)(nu_rec*(MYFLOAT)nbr/bss);
960 963
      if ((posfreq>0)&&(posfreq<nbr))
961
	{
964
        {
962 965
          // Initial version
963
	  // flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.);
966
          // flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.);
964 967
          // Version with log used
965
	  //flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.);
966
	  // flux_int*=pow(rf,3)*b*db*h;
967
	  //flux_int*=exp(3.*log(rf))*b*db*h;
968
	  flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.)*exp(3.*log(rf))*b*db*h;
968
          //flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.);
969
          // flux_int*=pow(rf,3)*b*db*h;
970
          //flux_int*=exp(3.*log(rf))*b*db*h;
971
          flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.)*exp(3.*log(rf))*b*db*h;
969 972

  
970
	  flx+=flux_int;
971
	}
973
          flx+=flux_int;
974
        }
972 975
    }
973 976

  
974 977
  return((float)(flx));
975 978
}
976 979

  
977 980
__device__ void impact(float phi,float r,float b,float tho,float m,
978
	               float *zp,float *fp,
979
	               int q,float db,
980
	               float h,int raie)
981
                       float *zp,float *fp,
982
                       int q,float db,
983
                       float h,int raie)
981 984
{
982 985
  float flx,rf,bss;
983 986

  
......
989 992
      flx=spectre_cn(rf,b,db,h,r,m,bss);
990 993
    }
991 994
  else
992
    { 
995
    {
993 996
      bss=2.;
994 997
      flx=spectre(rf,q,b,db,h,r,m,bss);
995 998
    }
996
  
999

  
997 1000
  *zp=1./rf;
998 1001
  *fp=flx;
999 1002

  
......
1051 1054

  
1052 1055
  up=0.;
1053 1056
  vp=1.;
1054
      
1055 1057
  pp=0.;
1056 1058
  nh=0;
1057 1059

  
1058 1060
  rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
1059
    
1061

  
1060 1062
  rps=fabs(b/us);
1061 1063
  rp0=rps;
1062 1064

  
......
1069 1071
     up=us;
1070 1072
     vp=vs;
1071 1073
     rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
1072
     rpp=rps;	  
1074
     rpp=rps;
1073 1075
     rps=fabs(b/us);
1074 1076
     ExitOnImpact = ((fmod(pp,PI)<fmod(phd,PI))&&(fmod(ps,PI)>fmod(phd,PI)))&&(rps>ri)&&(rps<re)?1:0;          
1075 1077

  
......
1080 1082
  }
1081 1083
  else
1082 1084
  {
1083
     zp=0.;
1084
     fp=0.;
1085
     zp=0.e0f;
1086
     fp=0.e0f;
1085 1087
  }
1086 1088

  
1087 1089
  __syncthreads();
......
1108 1110
  int q,raie;
1109 1111

  
1110 1112
  m=Mass;
1111
  rs=2.*m;
1113
  rs=2.e0f*m;
1112 1114
  ri=InternalRadius;
1113 1115
  re=ExternalRadius;
1114 1116
  tho=Angle;
......
1120 1122
  int nh;
1121 1123
  float zp=0,fp=0;
1122 1124
  // Autosize for image, 25% greater than external radius
1123
  bmx=1.25*re;
1125
  bmx=1.25e0f*re;
1124 1126

  
1125 1127
  // Angular step of integration
1126 1128
  h=4.e0f*PI/(float)TRACKPOINTS;
1127 1129

  
1128 1130
  // Step of Impact Parameter
1129
  db=bmx/(2.e0*(float)ImpactParameter);
1131
  db=bmx/(2.e0f*(float)ImpactParameter);
1130 1132

  
1131 1133
  // set origin as center of image
1132 1134
  float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
......
1153 1155

  
1154 1156
      if (ni<IdLast[bi])
1155 1157
      {
1156
        r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.)+Trajectories[bi*TRACKPOINTS+ni];
1158
        r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.e0f)+Trajectories[bi*TRACKPOINTS+ni];
1157 1159
      }
1158 1160
      else
1159 1161
      {
1160 1162
        r=Trajectories[bi*TRACKPOINTS+ni];
1161 1163
      }
1162
	   
1164

  
1163 1165
      if ((r<=re)&&(r>=ri))
1164 1166
      {
1165 1167
        ExitOnImpact=1;
1166 1168
        impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
1167 1169
      }
1168
	      
1170

  
1169 1171
      HalfLap++;
1170 1172
    } while ((HalfLap<=2)&&(ExitOnImpact==0));
1171 1173

  
......
1181 1183
                       float ExternalRadius,float Angle,
1182 1184
                       int Line)
1183 1185
{
1184
   // Integer Impact Parameter ID 
1186
   // Integer Impact Parameter ID
1185 1187
   int bi=blockIdx.x*blockDim.x+threadIdx.x;
1186 1188
   // Integer points on circle
1187 1189
   int i=blockIdx.y*blockDim.y+threadIdx.y;
......
1196 1198
  int q,raie;
1197 1199

  
1198 1200
  m=Mass;
1199
  rs=2.*m;
1201
  rs=2.e0f*m;
1200 1202
  ri=InternalRadius;
1201 1203
  re=ExternalRadius;
1202 1204
  tho=Angle;
......
1208 1210
  float zp=0,fp=0;
1209 1211

  
1210 1212
  // Autosize for image
1211
  bmx=1.25*re;
1213
  bmx=1.25e0f*re;
1212 1214

  
1213 1215
  // Angular step of integration
1214 1216
  h=4.e0f*PI/(float)TRACKPOINTS;
1215 1217

  
1216 1218
  // impact parameter
1217 1219
  b=(float)bi/(float)bmaxi*bmx;
1218
  db=bmx/(2.e0*(float)bmaxi);
1220
  db=bmx/(2.e0f*(float)bmaxi);
1219 1221

  
1220
  phi=2.*PI/(float)imx*(float)i;
1222
  phi=2.e0f*PI/(float)imx*(float)i;
1221 1223
  phd=atanp(cos(phi)*sin(tho),cos(tho));
1222 1224
  int yi=(int)((float)bi*sin(phi))+bmaxi;
1223 1225
  int xi=(int)((float)bi*cos(phi))+bmaxi;
......
1233 1235

  
1234 1236
     if (ni<IdLast[bi])
1235 1237
     {
1236
        r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.)+Trajectories[bi*TRACKPOINTS+ni];
1238
        r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.e0f)+Trajectories[bi*TRACKPOINTS+ni];
1237 1239
     }
1238 1240
     else
1239 1241
     {
1240
	r=Trajectories[bi*TRACKPOINTS+ni];
1242
        r=Trajectories[bi*TRACKPOINTS+ni];
1241 1243
     }
1242
	   
1244

  
1243 1245
     if ((r<=re)&&(r>=ri))
1244 1246
     {
1245
	ExitOnImpact=1;
1246
	impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
1247
        ExitOnImpact=1;
1248
        impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
1247 1249
     }
1248
	      
1250

  
1249 1251
     HalfLap++;
1250 1252
  } while ((HalfLap<=2)&&(ExitOnImpact==0));
1251
  
1253

  
1252 1254
  zImage[yi+2*bmaxi*xi]=zp;
1253
  fImage[yi+2*bmaxi*xi]=fp;  
1255
  fImage[yi+2*bmaxi*xi]=fp;
1254 1256

  
1255 1257
}
1256 1258

  
......
1259 1261
                           float ExternalRadius,float Angle,
1260 1262
                           int Line)
1261 1263
{
1262
  // Integer Impact Parameter ID 
1264
  // Integer Impact Parameter ID
1263 1265
  int bi=blockIdx.x*blockDim.x+threadIdx.x;
1264 1266
  // Integer Impact Parameter Size (half of image)
1265 1267
  int bmaxi=gridDim.x*blockDim.x;
......
1270 1272
  int raie,q;
1271 1273

  
1272 1274
  m=Mass;
1273
  rs=2.*m;
1275
  rs=2.e0f*m;
1274 1276
  ri=InternalRadius;
1275 1277
  re=ExternalRadius;
1276 1278
  tho=Angle;
......
1283 1285
  float zp,fp;
1284 1286

  
1285 1287
  // Autosize for image
1286
  bmx=1.25*re;
1288
  bmx=1.25e0f*re;
1287 1289

  
1288 1290
  // Angular step of integration
1289 1291
  h=4.e0f*PI/(float)TRACKPOINTS;
......
1293 1295

  
1294 1296
  float up,vp,pp,us,vs,ps;
1295 1297

  
1296
  up=0.;
1297
  vp=1.;
1298
      
1299
  pp=0.;
1298
  up=0.e0f;
1299
  vp=1.e0f;
1300
  pp=0.e0f;
1300 1301
  nh=0;
1301 1302

  
1302 1303
  rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
1303
  
1304

  
1304 1305
  // b versus us
1305 1306
  float bvus=fabs(b/us);
1306 1307
  float bvus0=bvus;
......
1327 1328
                           float ExternalRadius,float Angle,
1328 1329
                           int Line)
1329 1330
{
1330
  // Integer Impact Parameter ID 
1331
  // Integer Impact Parameter ID
1331 1332
  int bi=blockIdx.x*blockDim.x+threadIdx.x;
1332 1333

  
1333 1334
  // Integer Impact Parameter Size (half of image)
......
1365 1366

  
1366 1367
  up=0.;
1367 1368
  vp=1.;
1368
      
1369 1369
  pp=0.;
1370 1370
  nh=0;
1371 1371

  
1372 1372
  rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
1373
  
1373

  
1374 1374
  // b versus us
1375 1375
  float bvus=fabs(b/us);
1376 1376
  float bvus0=bvus;
......
1415 1415
        {
1416 1416
           r=Trajectory[ni];
1417 1417
        }
1418
	   
1418

  
1419 1419
        if ((r<=re)&&(r>=ri))
1420 1420
        {
1421 1421
           ExitOnImpact=1;
1422 1422
           impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
1423 1423
        }
1424
	      
1424

  
1425 1425
        HalfLap++;
1426 1426

  
1427 1427
     } while ((HalfLap<=2)&&(ExitOnImpact==0));
......
1432 1432
   fImage[yi+2*bmaxi*xi]=fp;
1433 1433

  
1434 1434
  }
1435
 
1435

  
1436 1436
}
1437 1437

  
1438 1438
__global__ void Original(float *zImage,float *fImage,
......
1451 1451
   int raie,q;
1452 1452

  
1453 1453
   m=Mass;
1454
   rs=2.*m;
1454
   rs=2.e0f*m;
1455 1455
   ri=InternalRadius;
1456 1456
   re=ExternalRadius;
1457 1457
   tho=Angle;
......
1467 1467
   // Angular step of integration
1468 1468
   h=4.e0f*PI/(float)TRACKPOINTS;
1469 1469

  
1470
   // Integer Impact Parameter ID 
1470
   // Integer Impact Parameter ID
1471 1471
   for (int bi=0;bi<bmaxi;bi++)
1472 1472
   {
1473 1473
      // impact parameter
......
1478 1478

  
1479 1479
      up=0.;
1480 1480
      vp=1.;
1481
      
1482 1481
      pp=0.;
1483 1482
      nh=0;
1484 1483

  
1485 1484
      rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
1486
  
1485

  
1487 1486
      // b versus us
1488 1487
      float bvus=fabs(b/us);
1489 1488
      float bvus0=bvus;
......
1532 1531
            {
1533 1532
               r=Trajectory[ni];
1534 1533
            }
1535
	   
1534

  
1536 1535
            if ((r<=re)&&(r>=ri))
1537 1536
            {
1538 1537
               ExitOnImpact=1;
1539 1538
               impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
1540 1539
            }
1541
 	      
1540

  
1542 1541
            HalfLap++;
1543
 
1542

  
1544 1543
         } while ((HalfLap<=2)&&(ExitOnImpact==0));
1545
  
1544

  
1546 1545
         zImage[yi+2*bmaxi*xi]=zp;
1547 1546
         fImage[yi+2*bmaxi*xi]=fp;
1548
  
1547

  
1549 1548
      }
1550 1549

  
1551
   } 
1552
   
1550
   }
1551

  
1553 1552
}
1554 1553
"""
1555 1554
    return(BlobCUDA)
1556
    
1555

  
1557 1556
# def ImageOutput(sigma,prefix):
1558 1557
#     from PIL import Image
1559 1558
#     Max=sigma.max()
1560 1559
#     Min=sigma.min()
1561
    
1562 1560
#     # Normalize value as 8bits Integer
1563 1561
#     SigmaInt=(255*(sigma-Min)/(Max-Min)).astype('uint8')
1564 1562
#     image = Image.fromarray(SigmaInt)
......
1566 1564

  
1567 1565
def ImageOutput(sigma,prefix,Colors):
1568 1566
    import matplotlib.pyplot as plt
1569
    start_time=time.time() 
1567
    start_time=time.time()
1570 1568
    if Colors == 'Red2Yellow':
1571 1569
        plt.imsave("%s.png" % prefix, sigma, cmap='afmhot')
1572 1570
    else:
1573 1571
        plt.imsave("%s.png" % prefix, sigma, cmap='Greys_r')
1574 1572
    save_time = time.time()-start_time
1573
    print("Save image as %s.png file" % prefix)
1575 1574
    print("Save Time : %f" % save_time)
1576 1575

  
1577 1576
def BlackHoleCL(zImage,fImage,InputCL):
......
1610 1609
    for platform in cl.get_platforms():
1611 1610
        for device in platform.get_devices():
1612 1611
            if Id==Device:
1612
                PF4XPU=platform.name
1613 1613
                XPU=device
1614 1614
                print("CPU/GPU selected: ",device.name.lstrip())
1615 1615
                HasXPU=True
......
1617 1617

  
1618 1618
    if HasXPU==False:
1619 1619
        print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1))
1620
        sys.exit()		
1621
	
1620
        sys.exit()
1621

  
1622 1622
    ctx = cl.Context([XPU])
1623 1623
    queue = cl.CommandQueue(ctx,
1624 1624
			    properties=cl.command_queue_properties.PROFILING_ENABLE)
......
1628 1628

  
1629 1629
    BuildOptions="-DPHYSICS=%i -DSETTRACKPOINTS=%i " % (PhysicsList[Physics],InputCL['TrackPoints'])
1630 1630

  
1631
    print('My Platform is ',platform.name)
1631
    print('My Platform is ',PF4XPU)
1632 1632
    
1633
    if 'Intel' in platform.name or 'Experimental' in platform.name or 'Clover' in platform.name or 'Portable' in platform.name :
1633
    if 'Intel' in PF4XPU or 'Experimental' in PF4XPU or 'Clover' in PF4XPU or 'Portable' in PF4XPU :
1634 1634
        print('No extra options for Intel and Clover!')
1635 1635
    else:
1636 1636
        BuildOptions = BuildOptions+" -cl-mad-enable"
......
1649 1649
    zImageCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=zImage)
1650 1650
    fImageCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=fImage)
1651 1651
    
1652
    start_time=time.time() 
1652
    start_time=time.time()
1653 1653

  
1654 1654
    if Method=='EachPixel':
1655 1655
        CLLaunch=BlackHoleCL.EachPixel(queue,(zImage.shape[0],zImage.shape[1]),
......
1810 1810
    IdLastCU = cuda.mem_alloc(IdLast.size*IdLast.dtype.itemsize)
1811 1811
    cuda.memcpy_htod(IdLastCU, IdLast)
1812 1812

  
1813
    start_time=time.time() 
1813
    start_time=time.time()
1814 1814

  
1815 1815
    if Method=='EachPixel':
1816 1816
        EachPixelCU(zImageCU,fImageCU,

Formats disponibles : Unified diff