Statistiques
| Révision :

root / Epidevomath / vector8.py @ 226

Historique | Voir | Annoter | Télécharger (8,22 ko)

1
#!/usr/bin/env python
2
# -*- coding: utf-8 -*-
3
"""
4
Demonstrateur OpenCL pour l'ANR Epidevomath
5

6
Emmanuel QUEMENER <emmanuel.quemener@ens-lyon.fr> CeCILLv2
7
"""
8
import getopt
9
import sys
10
import time
11
import numpy as np
12
import pyopencl as cl
13
import pyopencl.array as cl_array
14
from numpy.random import randint as nprnd
15

    
16

    
17
BlobOpenCL= """
18
#define znew  ((z=36969*(z&65535)+(z>>16))<<16)
19
#define wnew  ((w=18000*(w&65535)+(w>>16))&65535)
20
#define MWC   (znew+wnew)
21
#define SHR3  (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
22
#define CONG  (jcong=69069*jcong+1234567)
23
#define KISS  ((MWC^CONG)+SHR3)
24

25
#define MWCfp MWC * 2.328306435454494e-10f
26
#define KISSfp KISS * 2.328306435454494e-10f
27
#define SHR3fp SHR3 * 2.328306435454494e-10f
28
#define CONGfp CONG * 2.328306435454494e-10f
29

30
#define LENGTH 1.
31

32
#define PI 3.14159265359
33

34
#define SMALL_NUM 0.000000001
35

36
__kernel void SplutterPoints(__global float8* clData, float box,
37
                               uint seed_z,uint seed_w)
38
{
39
    int gid = get_global_id(0);
40
    uint z=seed_z+(uint)gid;
41
    uint w=seed_w-(uint)gid;
42

43
    clData[gid].s01234567 = (float8) (box*MWCfp,box*MWCfp,box*MWCfp,0.,0.,0.,0.,0.);
44
}
45

46
__kernel void ExtendSegment(__global float8* clData, float length,
47
                               uint seed_z,uint seed_w)
48
{
49
    int gid = get_global_id(0);
50
    uint z=seed_z+(uint)gid;
51
    uint w=seed_w-(uint)gid;
52

53
    float theta=MWCfp*PI;
54
    float phi=MWCfp*PI*2.;
55
    float sinTheta=sin(theta);
56
    clData[gid].s4=clData[gid].s0+length*sinTheta*cos(phi);
57
    clData[gid].s5=clData[gid].s1+length*sinTheta*sin(phi);
58
    clData[gid].s6=clData[gid].s2+length*cos(theta);
59

60
}
61

62
__kernel void EstimateLength(__global float8* clData,__global float* clSize)
63
{
64
    int gid = get_global_id(0);
65
    
66
    clSize[gid]=distance(clData[gid].lo,clData[gid].hi);
67
}
68

69
// Get from http://geomalgorithms.com/a07-_distance.html
70

71
__kernel void ShortestDistance(__global float8* clData,__global float* clDistance)
72
{
73
    int gidx = get_global_id(0);
74
    int ggsz = get_global_size(0);
75
    int gidy = get_global_id(1);
76
    
77
    float4   u = clData[gidx].hi - clData[gidx].lo;
78
    float4   v = clData[gidy].hi - clData[gidy].lo;
79
    float4   w = clData[gidx].lo - clData[gidy].lo;     
80

81
    float    a = dot(u,u);         // always >= 0
82
    float    b = dot(u,v);
83
    float    c = dot(v,v);         // always >= 0
84
    float    d = dot(u,w);
85
    float    e = dot(v,w);
86
   
87
    float    D = a*c - b*b;        // always >= 0
88
    float    sc, sN, sD = D;       // sc = sN / sD, default sD = D >= 0
89
    float    tc, tN, tD = D;       // tc = tN / tD, default tD = D >= 0
90

91
    // compute the line parameters of the two closest points
92
    if (D < SMALL_NUM) { // the lines are almost parallel
93
        sN = 0.0;         // force using point P0 on segment S1
94
        sD = 1.0;         // to prevent possible division by 0.0 later
95
        tN = e;
96
        tD = c;
97
    }
98
    else {                 // get the closest points on the infinite lines
99
        sN = (b*e - c*d);
100
        tN = (a*e - b*d);
101
        if (sN < 0.0) {        // sc < 0 => the s=0 edge is visible
102
            sN = 0.0;
103
            tN = e;
104
            tD = c;
105
        }
106
        else if (sN > sD) {  // sc > 1  => the s=1 edge is visible
107
            sN = sD;
108
            tN = e + b;
109
            tD = c;
110
        }
111
    }
112

113
    if (tN < 0.0) {            // tc < 0 => the t=0 edge is visible
114
        tN = 0.0;
115
        // recompute sc for this edge
116
        if (-d < 0.0)
117
            sN = 0.0;
118
        else if (-d > a)
119
            sN = sD;
120
        else {
121
            sN = -d;
122
            sD = a;
123
        }
124
    }
125
    else if (tN > tD) {      // tc > 1  => the t=1 edge is visible
126
        tN = tD;
127
        // recompute sc for this edge
128
        if ((-d + b) < 0.0)
129
            sN = 0;
130
        else if ((-d + b) > a)
131
            sN = sD;
132
        else {
133
            sN = (-d +  b);
134
            sD = a;
135
        }
136
    }
137
    // finally do the division to get sc and tc
138
    sc = (fabs(sN) < SMALL_NUM ? 0.0 : sN / sD);
139
    tc = (fabs(tN) < SMALL_NUM ? 0.0 : tN / tD);
140

141
    // get the difference of the two closest points
142
    float4   dP = w + (sc * u) - (tc * v);  // =  S1(sc) - S2(tc)
143

144
    clDistance[ggsz*gidy+gidx]=length(dP);   // return the closest distance
145
}
146

147
 """
148

    
149
if __name__=='__main__':
150
    
151
    # Set defaults values
152
  
153
    # Id of Device : 1 is for first find !
154
    Device=1
155
    # Iterations is integer
156
    Number=16384
157
    # Size of box
158
    SizeOfBox=1000.
159
    # Size of segment
160
    LengthOfSegment=1.
161
    # Redo the last process
162
    Redo=1
163

    
164
    HowToUse='%s -d <DeviceId> -n <NumberOfSegments> -s <SizeOfBox> -l <LengthOfSegment>'
165

    
166
    try:
167
        opts, args = getopt.getopt(sys.argv[1:],"hd:n:s:l:r:",["device=","number=","size=","length=","redo="])
168
    except getopt.GetoptError:
169
        print HowToUse % sys.argv[0]
170
        sys.exit(2)
171

    
172
    for opt, arg in opts:
173
        if opt == '-h':
174
            print HowToUse % sys.argv[0]
175

    
176
            print "\nInformations about devices detected under OpenCL:"
177
            try:
178
                Id=1
179
                for platform in cl.get_platforms():
180
                    for device in platform.get_devices():
181
                        deviceType=cl.device_type.to_string(device.type)
182
                        print "Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip())
183
                        Id=Id+1
184
                sys.exit()
185
            except ImportError:
186
                print "Your platform does not seem to support OpenCL"
187
                sys.exit()
188

    
189
        elif opt in ("-d", "--device"):
190
            Device=int(arg)
191
        elif opt in ("-n", "--number"):
192
            Number=int(arg)
193
        elif opt in ("-s", "--size"):
194
            SizeOfBox=np.float32(arg)
195
        elif opt in ("-l", "--length"):
196
            LengthOfSegment=np.float32(arg)
197
        elif opt in ("-r", "--redo"):
198
            Redo=int(arg)
199
            
200
    print "Device choosed : %s" % Device
201
    print "Number of segments : %s" % Number
202
    print "Size of Box : %s" % SizeOfBox
203
    print "Length of Segment % s" % LengthOfSegment
204
    print "Redo the last process % s" % Redo
205
    
206
    MyData = np.zeros(Number, dtype=cl_array.vec.float8)
207

    
208
    Id=1
209
    HasXPU=False
210
    for platform in cl.get_platforms():
211
        for device in platform.get_devices():
212
            if Id==Device:
213
                PlatForm=platform
214
                XPU=device
215
                print "CPU/GPU selected: ",device.name.lstrip()
216
                HasXPU=True
217
            Id+=1
218

    
219
    if HasXPU==False:
220
        print "No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)
221
        sys.exit()      
222

    
223
    # Je cree le contexte et la queue pour son execution
224
    try:
225
        ctx = cl.Context([XPU])
226
        queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE)
227
    except:
228
        print "Crash during context creation"
229
   
230

    
231
    MyRoutines = cl.Program(ctx, BlobOpenCL).build()
232

    
233
    mf = cl.mem_flags
234
    clData = cl.Buffer(ctx, mf.READ_WRITE, MyData.nbytes)
235

    
236
    print 'Tous au meme endroit',MyData
237

    
238
    MyRoutines.SplutterPoints(queue,(Number,1),None,clData,np.float32(SizeOfBox-LengthOfSegment),np.uint32(nprnd(2**32)),np.uint32(nprnd(2**32)))
239

    
240
    cl.enqueue_copy(queue, MyData, clData)
241

    
242
    print 'Tous distribues',MyData
243

    
244
    MyRoutines.ExtendSegment(queue,(Number,1),None,clData,np.float32(LengthOfSegment),np.uint32(nprnd(2**32)),np.uint32(nprnd(2**32)))
245

    
246
    cl.enqueue_copy(queue, MyData, clData)
247

    
248
    print 'Tous avec leur extremite',MyData
249

    
250
    MySize = np.zeros(len(MyData), dtype=np.float32)
251
    clSize = cl.Buffer(ctx, mf.READ_WRITE, MySize.nbytes)
252

    
253
    MyRoutines.EstimateLength(queue, (Number,1), None, clData, clSize)
254
    cl.enqueue_copy(queue, MySize, clSize)
255

    
256
    print 'La distance de chacun avec son extremite',MySize
257

    
258
    MyDistance = np.zeros(len(MyData)*len(MyData), dtype=np.float32)
259
    clDistance = cl.Buffer(ctx, mf.READ_WRITE, MyDistance.nbytes)
260

    
261
    time_start=time.time()
262
    for i in xrange(Redo):
263
        CLLaunch=MyRoutines.ShortestDistance(queue, (Number,Number), None, clData, clDistance)
264
        sys.stdout.write('.')
265
        CLLaunch.wait()
266
    print "\nDuration on %s for each %s" % (Device,(time.time()-time_start)/Redo)
267
    cl.enqueue_copy(queue, MyDistance, clDistance)
268

    
269
    MyDistance=np.reshape(MyDistance,(Number,Number))
270
    clDistance.release()
271

    
272
    print 'La distance de chacun',MyDistance
273

    
274
    clData.release()