root / TrouNoir / TrouNoir.py @ 224
Historique | Voir | Annoter | Télécharger (43,55 ko)
1 | 221 | equemene | #!/usr/bin/env python
|
---|---|---|---|
2 | 199 | equemene | #
|
3 | 199 | equemene | # TrouNoir model using PyOpenCL
|
4 | 199 | equemene | #
|
5 | 204 | equemene | # CC BY-NC-SA 2019 : <emmanuel.quemener@ens-lyon.fr>
|
6 | 199 | equemene | #
|
7 | 199 | equemene | # Thanks to Andreas Klockner for PyOpenCL:
|
8 | 199 | equemene | # http://mathema.tician.de/software/pyopencl
|
9 | 199 | equemene | #
|
10 | 204 | equemene | # Original code programmed in Fortran 77 in mars 1994
|
11 | 204 | equemene | # for Practical Work of Numerical Simulation
|
12 | 204 | equemene | # DEA (old Master2) in astrophysics and spatial techniques in Meudon
|
13 | 204 | equemene | # by Herve Aussel & Emmanuel Quemener
|
14 | 204 | equemene | #
|
15 | 204 | equemene | # Conversion in C done by Emmanuel Quemener in august 1997
|
16 | 204 | equemene | # GPUfication in OpenCL under Python in july 2019
|
17 | 221 | equemene | # GPUfication in CUDA under Python in august 2019
|
18 | 204 | equemene | #
|
19 | 204 | equemene | # Thanks to :
|
20 | 204 | equemene | #
|
21 | 204 | equemene | # - Herve Aussel for his part of code of black body spectrum
|
22 | 204 | equemene | # - Didier Pelat for his help to perform this work
|
23 | 204 | equemene | # - Jean-Pierre Luminet for his article published in 1979
|
24 | 204 | equemene | # - Numerical Recipies for Runge Kutta recipies
|
25 | 204 | equemene | # - Luc Blanchet for his disponibility about my questions in General Relativity
|
26 | 204 | equemene | # - Pierre Lena for his passion about science and vulgarisation
|
27 | 199 | equemene | |
28 | 199 | equemene | import pyopencl as cl |
29 | 199 | equemene | import numpy |
30 | 199 | equemene | import time,string |
31 | 199 | equemene | from numpy.random import randint as nprnd |
32 | 199 | equemene | import sys |
33 | 199 | equemene | import getopt |
34 | 199 | equemene | import matplotlib.pyplot as plt |
35 | 211 | equemene | from socket import gethostname |
36 | 199 | equemene | |
37 | 211 | equemene | def DictionariesAPI(): |
38 | 211 | equemene | PhysicsList={'Einstein':0,'Newton':1} |
39 | 211 | equemene | return(PhysicsList)
|
40 | 204 | equemene | |
41 | 211 | equemene | BlobOpenCL= """
|
42 | 204 | equemene |
|
43 | 199 | equemene | #define PI (float)3.14159265359
|
44 | 209 | equemene | #define nbr 256
|
45 | 199 | equemene |
|
46 | 211 | equemene | #define EINSTEIN 0
|
47 | 211 | equemene | #define NEWTON 1
|
48 | 211 | equemene |
|
49 | 224 | equemene | #ifdef SETTRACKPOINTS
|
50 | 224 | equemene | #define TRACKPOINTS SETTRACKPOINTS
|
51 | 224 | equemene | #else
|
52 | 217 | equemene | #define TRACKPOINTS 2048
|
53 | 224 | equemene | #endif
|
54 | 217 | equemene |
|
55 | 199 | equemene | float atanp(float x,float y)
|
56 | 199 | equemene | {
|
57 | 199 | equemene | float angle;
|
58 | 199 | equemene |
|
59 | 199 | equemene | angle=atan2(y,x);
|
60 | 199 | equemene |
|
61 | 204 | equemene | if (angle<0.e0f)
|
62 | 199 | equemene | {
|
63 | 199 | equemene | angle+=(float)2.e0f*PI;
|
64 | 199 | equemene | }
|
65 | 199 | equemene |
|
66 | 199 | equemene | return angle;
|
67 | 199 | equemene | }
|
68 | 199 | equemene |
|
69 | 199 | equemene | float f(float v)
|
70 | 199 | equemene | {
|
71 | 199 | equemene | return v;
|
72 | 199 | equemene | }
|
73 | 199 | equemene |
|
74 | 211 | equemene | #if PHYSICS == NEWTON
|
75 | 199 | equemene | float g(float u,float m,float b)
|
76 | 199 | equemene | {
|
77 | 211 | equemene | return (-u);
|
78 | 211 | equemene | }
|
79 | 211 | equemene | #else
|
80 | 211 | equemene | float g(float u,float m,float b)
|
81 | 211 | equemene | {
|
82 | 204 | equemene | return (3.e0f*m/b*pow(u,2)-u);
|
83 | 199 | equemene | }
|
84 | 211 | equemene | #endif
|
85 | 199 | equemene |
|
86 | 199 | equemene | void calcul(float *us,float *vs,float up,float vp,
|
87 | 199 | equemene | float h,float m,float b)
|
88 | 199 | equemene | {
|
89 | 199 | equemene | float c0,c1,c2,c3,d0,d1,d2,d3;
|
90 | 199 | equemene |
|
91 | 199 | equemene | c0=h*f(vp);
|
92 | 199 | equemene | c1=h*f(vp+c0/2.);
|
93 | 199 | equemene | c2=h*f(vp+c1/2.);
|
94 | 199 | equemene | c3=h*f(vp+c2);
|
95 | 199 | equemene | d0=h*g(up,m,b);
|
96 | 199 | equemene | d1=h*g(up+d0/2.,m,b);
|
97 | 199 | equemene | d2=h*g(up+d1/2.,m,b);
|
98 | 199 | equemene | d3=h*g(up+d2,m,b);
|
99 | 199 | equemene |
|
100 | 199 | equemene | *us=up+(c0+2.*c1+2.*c2+c3)/6.;
|
101 | 199 | equemene | *vs=vp+(d0+2.*d1+2.*d2+d3)/6.;
|
102 | 199 | equemene | }
|
103 | 199 | equemene |
|
104 | 199 | equemene | void rungekutta(float *ps,float *us,float *vs,
|
105 | 199 | equemene | float pp,float up,float vp,
|
106 | 199 | equemene | float h,float m,float b)
|
107 | 199 | equemene | {
|
108 | 199 | equemene | calcul(us,vs,up,vp,h,m,b);
|
109 | 199 | equemene | *ps=pp+h;
|
110 | 199 | equemene | }
|
111 | 199 | equemene |
|
112 | 199 | equemene | float decalage_spectral(float r,float b,float phi,
|
113 | 199 | equemene | float tho,float m)
|
114 | 199 | equemene | {
|
115 | 199 | equemene | return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi)));
|
116 | 199 | equemene | }
|
117 | 199 | equemene |
|
118 | 199 | equemene | float spectre(float rf,int q,float b,float db,
|
119 | 199 | equemene | float h,float r,float m,float bss)
|
120 | 199 | equemene | {
|
121 | 199 | equemene | float flx;
|
122 | 199 | equemene |
|
123 | 221 | equemene | // flx=exp(q*log(r/m))*pow(rf,4)*b*db*h;
|
124 | 221 | equemene | flx=exp(q*log(r/m)+4.*log(rf))*b*db*h;
|
125 | 199 | equemene | return(flx);
|
126 | 199 | equemene | }
|
127 | 199 | equemene |
|
128 | 209 | equemene | float spectre_cn(float rf32,float b32,float db32,
|
129 | 209 | equemene | float h32,float r32,float m32,float bss32)
|
130 | 199 | equemene | {
|
131 | 209 | equemene |
|
132 | 213 | equemene | #define MYFLOAT float
|
133 | 209 | equemene |
|
134 | 209 | equemene | MYFLOAT rf=(MYFLOAT)(rf32);
|
135 | 209 | equemene | MYFLOAT b=(MYFLOAT)(b32);
|
136 | 209 | equemene | MYFLOAT db=(MYFLOAT)(db32);
|
137 | 209 | equemene | MYFLOAT h=(MYFLOAT)(h32);
|
138 | 209 | equemene | MYFLOAT r=(MYFLOAT)(r32);
|
139 | 209 | equemene | MYFLOAT m=(MYFLOAT)(m32);
|
140 | 209 | equemene | MYFLOAT bss=(MYFLOAT)(bss32);
|
141 | 209 | equemene |
|
142 | 209 | equemene | MYFLOAT flx;
|
143 | 209 | equemene | MYFLOAT nu_rec,nu_em,qu,temp_em,flux_int;
|
144 | 199 | equemene | int fi,posfreq;
|
145 | 199 | equemene |
|
146 | 209 | equemene | #define planck 6.62e-34
|
147 | 209 | equemene | #define k 1.38e-23
|
148 | 209 | equemene | #define c2 9.e16
|
149 | 209 | equemene | #define temp 3.e7
|
150 | 209 | equemene | #define m_point 1.
|
151 | 199 | equemene |
|
152 | 209 | equemene | #define lplanck (log(6.62)-34.*log(10.))
|
153 | 209 | equemene | #define lk (log(1.38)-23.*log(10.))
|
154 | 209 | equemene | #define lc2 (log(9.)+16.*log(10.))
|
155 | 199 | equemene |
|
156 | 209 | equemene | MYFLOAT v=1.-3./r;
|
157 | 199 | equemene |
|
158 | 209 | equemene | qu=1./sqrt((1.-3./r)*r)*(sqrt(r)-sqrt(6.)+sqrt(3.)/2.*log((sqrt(r)+sqrt(3.))/(sqrt(r)-sqrt(3.))* 0.17157287525380988 ));
|
159 | 199 | equemene |
|
160 | 209 | equemene | temp_em=temp*sqrt(m)*exp(0.25*log(m_point)-0.75*log(r)-0.125*log(v)+0.25*log(fabs(qu)));
|
161 | 209 | equemene |
|
162 | 209 | equemene | flux_int=0.;
|
163 | 209 | equemene | flx=0.;
|
164 | 209 | equemene |
|
165 | 201 | equemene | for (fi=0;fi<nbr;fi++)
|
166 | 199 | equemene | {
|
167 | 209 | equemene | nu_em=bss*(MYFLOAT)fi/(MYFLOAT)nbr;
|
168 | 209 | equemene | nu_rec=nu_em*rf;
|
169 | 209 | equemene | posfreq=(int)(nu_rec*(MYFLOAT)nbr/bss);
|
170 | 199 | equemene | if ((posfreq>0)&&(posfreq<nbr))
|
171 | 199 | equemene | {
|
172 | 209 | equemene | // Initial version
|
173 | 211 | equemene | // flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.);
|
174 | 209 | equemene | // Version with log used
|
175 | 211 | equemene | //flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.);
|
176 | 211 | equemene | // flux_int*=pow(rf,3)*b*db*h;
|
177 | 211 | equemene | //flux_int*=exp(3.*log(rf))*b*db*h;
|
178 | 211 | equemene | flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.)*exp(3.*log(rf))*b*db*h;
|
179 | 211 | equemene |
|
180 | 199 | equemene | flx+=flux_int;
|
181 | 199 | equemene | }
|
182 | 199 | equemene | }
|
183 | 209 | equemene |
|
184 | 209 | equemene | return((float)(flx));
|
185 | 199 | equemene | }
|
186 | 199 | equemene |
|
187 | 199 | equemene | void impact(float phi,float r,float b,float tho,float m,
|
188 | 199 | equemene | float *zp,float *fp,
|
189 | 199 | equemene | int q,float db,
|
190 | 204 | equemene | float h,int raie)
|
191 | 199 | equemene | {
|
192 | 204 | equemene | float flx,rf,bss;
|
193 | 199 | equemene |
|
194 | 199 | equemene | rf=decalage_spectral(r,b,phi,tho,m);
|
195 | 199 | equemene |
|
196 | 199 | equemene | if (raie==0)
|
197 | 199 | equemene | {
|
198 | 209 | equemene | bss=1.e19;
|
199 | 209 | equemene | flx=spectre_cn(rf,b,db,h,r,m,bss);
|
200 | 209 | equemene | }
|
201 | 209 | equemene | else
|
202 | 209 | equemene | {
|
203 | 204 | equemene | bss=2.;
|
204 | 199 | equemene | flx=spectre(rf,q,b,db,h,r,m,bss);
|
205 | 199 | equemene | }
|
206 | 199 | equemene |
|
207 | 199 | equemene | *zp=1./rf;
|
208 | 199 | equemene | *fp=flx;
|
209 | 199 | equemene |
|
210 | 199 | equemene | }
|
211 | 199 | equemene |
|
212 | 204 | equemene | __kernel void EachPixel(__global float *zImage,__global float *fImage,
|
213 | 204 | equemene | float Mass,float InternalRadius,
|
214 | 204 | equemene | float ExternalRadius,float Angle,
|
215 | 209 | equemene | int Line)
|
216 | 199 | equemene | {
|
217 | 199 | equemene | uint xi=(uint)get_global_id(0);
|
218 | 199 | equemene | uint yi=(uint)get_global_id(1);
|
219 | 199 | equemene | uint sizex=(uint)get_global_size(0);
|
220 | 199 | equemene | uint sizey=(uint)get_global_size(1);
|
221 | 199 | equemene |
|
222 | 204 | equemene | // Perform trajectory for each pixel, exit on hit
|
223 | 199 | equemene |
|
224 | 217 | equemene | private float m,rs,ri,re,tho;
|
225 | 217 | equemene | private int q,raie;
|
226 | 199 | equemene |
|
227 | 204 | equemene | m=Mass;
|
228 | 204 | equemene | rs=2.*m;
|
229 | 204 | equemene | ri=InternalRadius;
|
230 | 204 | equemene | re=ExternalRadius;
|
231 | 204 | equemene | tho=Angle;
|
232 | 204 | equemene | q=-2;
|
233 | 209 | equemene | raie=Line;
|
234 | 204 | equemene |
|
235 | 217 | equemene | private float d,bmx,db,b,h;
|
236 | 218 | equemene | private float rp0,rpp,rps;
|
237 | 217 | equemene | private float phi,thi,phd,php,nr,r;
|
238 | 217 | equemene | private int nh;
|
239 | 217 | equemene | private float zp,fp;
|
240 | 199 | equemene |
|
241 | 199 | equemene | // Autosize for image
|
242 | 199 | equemene | bmx=1.25*re;
|
243 | 199 | equemene | b=0.;
|
244 | 199 | equemene |
|
245 | 217 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
246 | 201 | equemene |
|
247 | 199 | equemene | // set origin as center of image
|
248 | 199 | equemene | float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
249 | 201 | equemene | float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
250 | 199 | equemene | // angle extracted from cylindric symmetry
|
251 | 199 | equemene | phi=atanp(x,y);
|
252 | 199 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
253 | 199 | equemene |
|
254 | 204 | equemene | float up,vp,pp,us,vs,ps;
|
255 | 204 | equemene |
|
256 | 204 | equemene | // impact parameter
|
257 | 204 | equemene | b=sqrt(x*x+y*y)*(float)2.e0f/(float)sizex*bmx;
|
258 | 204 | equemene | // step of impact parameter;
|
259 | 209 | equemene | db=bmx/(float)(sizex);
|
260 | 204 | equemene |
|
261 | 209 | equemene | up=0.;
|
262 | 209 | equemene | vp=1.;
|
263 | 199 | equemene |
|
264 | 199 | equemene | pp=0.;
|
265 | 199 | equemene | nh=0;
|
266 | 199 | equemene |
|
267 | 199 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
268 | 199 | equemene |
|
269 | 218 | equemene | rps=fabs(b/us);
|
270 | 218 | equemene | rp0=rps;
|
271 | 199 | equemene |
|
272 | 204 | equemene | int ExitOnImpact=0;
|
273 | 199 | equemene |
|
274 | 199 | equemene | do
|
275 | 199 | equemene | {
|
276 | 199 | equemene | nh++;
|
277 | 199 | equemene | pp=ps;
|
278 | 199 | equemene | up=us;
|
279 | 199 | equemene | vp=vs;
|
280 | 218 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
281 | 218 | equemene | rpp=rps;
|
282 | 218 | equemene | rps=fabs(b/us);
|
283 | 218 | equemene | ExitOnImpact = ((fmod(pp,PI)<fmod(phd,PI))&&(fmod(ps,PI)>fmod(phd,PI)))&&(rps>ri)&&(rps<re)?1:0;
|
284 | 199 | equemene |
|
285 | 218 | equemene | } while ((rps>=rs)&&(rps<=rp0)&&(ExitOnImpact==0));
|
286 | 199 | equemene |
|
287 | 199 | equemene | if (ExitOnImpact==1) {
|
288 | 218 | equemene | impact(phi,rpp,b,tho,m,&zp,&fp,q,db,h,raie);
|
289 | 199 | equemene | }
|
290 | 199 | equemene | else
|
291 | 199 | equemene | {
|
292 | 199 | equemene | zp=0.;
|
293 | 201 | equemene | fp=0.;
|
294 | 199 | equemene | }
|
295 | 199 | equemene |
|
296 | 204 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
297 | 204 | equemene |
|
298 | 201 | equemene | zImage[yi+sizex*xi]=(float)zp;
|
299 | 204 | equemene | fImage[yi+sizex*xi]=(float)fp;
|
300 | 204 | equemene | }
|
301 | 199 | equemene |
|
302 | 204 | equemene | __kernel void Pixel(__global float *zImage,__global float *fImage,
|
303 | 204 | equemene | __global float *Trajectories,__global int *IdLast,
|
304 | 224 | equemene | uint ImpactParameter,
|
305 | 204 | equemene | float Mass,float InternalRadius,
|
306 | 204 | equemene | float ExternalRadius,float Angle,
|
307 | 209 | equemene | int Line)
|
308 | 204 | equemene | {
|
309 | 204 | equemene | uint xi=(uint)get_global_id(0);
|
310 | 204 | equemene | uint yi=(uint)get_global_id(1);
|
311 | 204 | equemene | uint sizex=(uint)get_global_size(0);
|
312 | 204 | equemene | uint sizey=(uint)get_global_size(1);
|
313 | 204 | equemene |
|
314 | 204 | equemene | // Perform trajectory for each pixel
|
315 | 204 | equemene |
|
316 | 209 | equemene | float m,rs,ri,re,tho;
|
317 | 209 | equemene | int q,raie;
|
318 | 204 | equemene |
|
319 | 204 | equemene | m=Mass;
|
320 | 204 | equemene | rs=2.*m;
|
321 | 204 | equemene | ri=InternalRadius;
|
322 | 204 | equemene | re=ExternalRadius;
|
323 | 204 | equemene | tho=Angle;
|
324 | 204 | equemene | q=-2;
|
325 | 209 | equemene | raie=Line;
|
326 | 204 | equemene |
|
327 | 204 | equemene | float d,bmx,db,b,h;
|
328 | 204 | equemene | float phi,thi,phd,php,nr,r;
|
329 | 204 | equemene | int nh;
|
330 | 204 | equemene | float zp=0,fp=0;
|
331 | 204 | equemene |
|
332 | 209 | equemene | // Autosize for image, 25% greater than external radius
|
333 | 204 | equemene | bmx=1.25*re;
|
334 | 204 | equemene |
|
335 | 204 | equemene | // Angular step of integration
|
336 | 224 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
337 | 204 | equemene |
|
338 | 204 | equemene | // Step of Impact Parameter
|
339 | 209 | equemene | db=bmx/(2.e0*(float)ImpactParameter);
|
340 | 204 | equemene |
|
341 | 204 | equemene | // set origin as center of image
|
342 | 204 | equemene | float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
343 | 204 | equemene | float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
344 | 204 | equemene |
|
345 | 204 | equemene | // angle extracted from cylindric symmetry
|
346 | 204 | equemene | phi=atanp(x,y);
|
347 | 204 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
348 | 204 | equemene |
|
349 | 204 | equemene | // Real Impact Parameter
|
350 | 204 | equemene | b=sqrt(x*x+y*y)*bmx/(float)ImpactParameter;
|
351 | 204 | equemene |
|
352 | 204 | equemene | // Integer Impact Parameter
|
353 | 204 | equemene | uint bi=(uint)sqrt(x*x+y*y);
|
354 | 204 | equemene |
|
355 | 204 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
356 | 204 | equemene |
|
357 | 204 | equemene | if (bi<ImpactParameter)
|
358 | 204 | equemene | {
|
359 | 204 | equemene | do
|
360 | 204 | equemene | {
|
361 | 204 | equemene | php=phd+(float)HalfLap*PI;
|
362 | 204 | equemene | nr=php/h;
|
363 | 204 | equemene | ni=(int)nr;
|
364 | 204 | equemene |
|
365 | 204 | equemene | if (ni<IdLast[bi])
|
366 | 204 | equemene | {
|
367 | 224 | equemene | r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.)+Trajectories[bi*TRACKPOINTS+ni];
|
368 | 204 | equemene | }
|
369 | 204 | equemene | else
|
370 | 204 | equemene | {
|
371 | 224 | equemene | r=Trajectories[bi*TRACKPOINTS+ni];
|
372 | 204 | equemene | }
|
373 | 204 | equemene |
|
374 | 204 | equemene | if ((r<=re)&&(r>=ri))
|
375 | 204 | equemene | {
|
376 | 204 | equemene | ExitOnImpact=1;
|
377 | 204 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
378 | 204 | equemene | }
|
379 | 204 | equemene |
|
380 | 204 | equemene | HalfLap++;
|
381 | 204 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
382 | 204 | equemene |
|
383 | 204 | equemene | }
|
384 | 204 | equemene |
|
385 | 201 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
386 | 204 | equemene |
|
387 | 204 | equemene | zImage[yi+sizex*xi]=zp;
|
388 | 204 | equemene | fImage[yi+sizex*xi]=fp;
|
389 | 204 | equemene | }
|
390 | 204 | equemene |
|
391 | 204 | equemene | __kernel void Circle(__global float *Trajectories,__global int *IdLast,
|
392 | 204 | equemene | __global float *zImage,__global float *fImage,
|
393 | 204 | equemene | float Mass,float InternalRadius,
|
394 | 204 | equemene | float ExternalRadius,float Angle,
|
395 | 209 | equemene | int Line)
|
396 | 204 | equemene | {
|
397 | 204 | equemene | // Integer Impact Parameter ID
|
398 | 204 | equemene | int bi=get_global_id(0);
|
399 | 204 | equemene | // Integer points on circle
|
400 | 204 | equemene | int i=get_global_id(1);
|
401 | 204 | equemene | // Integer Impact Parameter Size (half of image)
|
402 | 204 | equemene | int bmaxi=get_global_size(0);
|
403 | 204 | equemene | // Integer Points on circle
|
404 | 204 | equemene | int imx=get_global_size(1);
|
405 | 204 | equemene |
|
406 | 204 | equemene | // Perform trajectory for each pixel
|
407 | 204 | equemene |
|
408 | 209 | equemene | float m,rs,ri,re,tho;
|
409 | 209 | equemene | int q,raie;
|
410 | 204 | equemene |
|
411 | 204 | equemene | m=Mass;
|
412 | 204 | equemene | rs=2.*m;
|
413 | 204 | equemene | ri=InternalRadius;
|
414 | 204 | equemene | re=ExternalRadius;
|
415 | 204 | equemene | tho=Angle;
|
416 | 209 | equemene | raie=Line;
|
417 | 204 | equemene |
|
418 | 204 | equemene | float bmx,db,b,h;
|
419 | 204 | equemene | float phi,thi,phd;
|
420 | 204 | equemene | int nh;
|
421 | 204 | equemene | float zp=0,fp=0;
|
422 | 204 | equemene |
|
423 | 204 | equemene | // Autosize for image
|
424 | 204 | equemene | bmx=1.25*re;
|
425 | 204 | equemene |
|
426 | 204 | equemene | // Angular step of integration
|
427 | 224 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
428 | 204 | equemene |
|
429 | 204 | equemene | // impact parameter
|
430 | 204 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
431 | 224 | equemene | db=bmx/(2.e0f*(float)bmaxi);
|
432 | 204 | equemene |
|
433 | 204 | equemene | phi=2.*PI/(float)imx*(float)i;
|
434 | 204 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
435 | 204 | equemene | int yi=(int)((float)bi*sin(phi))+bmaxi;
|
436 | 204 | equemene | int xi=(int)((float)bi*cos(phi))+bmaxi;
|
437 | 204 | equemene |
|
438 | 204 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
439 | 204 | equemene | float php,nr,r;
|
440 | 204 | equemene |
|
441 | 204 | equemene | do
|
442 | 204 | equemene | {
|
443 | 204 | equemene | php=phd+(float)HalfLap*PI;
|
444 | 204 | equemene | nr=php/h;
|
445 | 204 | equemene | ni=(int)nr;
|
446 | 204 | equemene |
|
447 | 204 | equemene | if (ni<IdLast[bi])
|
448 | 204 | equemene | {
|
449 | 224 | equemene | r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.)+Trajectories[bi*TRACKPOINTS+ni];
|
450 | 204 | equemene | }
|
451 | 204 | equemene | else
|
452 | 204 | equemene | {
|
453 | 224 | equemene | r=Trajectories[bi*TRACKPOINTS+ni];
|
454 | 204 | equemene | }
|
455 | 204 | equemene |
|
456 | 204 | equemene | if ((r<=re)&&(r>=ri))
|
457 | 204 | equemene | {
|
458 | 204 | equemene | ExitOnImpact=1;
|
459 | 204 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
460 | 204 | equemene | }
|
461 | 204 | equemene |
|
462 | 204 | equemene | HalfLap++;
|
463 | 204 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
464 | 204 | equemene |
|
465 | 204 | equemene | zImage[yi+2*bmaxi*xi]=zp;
|
466 | 204 | equemene | fImage[yi+2*bmaxi*xi]=fp;
|
467 | 204 | equemene |
|
468 | 204 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
469 | 204 | equemene |
|
470 | 204 | equemene | }
|
471 | 204 | equemene |
|
472 | 224 | equemene | __kernel void Trajectory(__global float *Trajectories,__global int *IdLast,
|
473 | 204 | equemene | float Mass,float InternalRadius,
|
474 | 204 | equemene | float ExternalRadius,float Angle,
|
475 | 209 | equemene | int Line)
|
476 | 204 | equemene | {
|
477 | 204 | equemene | // Integer Impact Parameter ID
|
478 | 204 | equemene | int bi=get_global_id(0);
|
479 | 204 | equemene | // Integer Impact Parameter Size (half of image)
|
480 | 204 | equemene | int bmaxi=get_global_size(0);
|
481 | 204 | equemene |
|
482 | 204 | equemene | // Perform trajectory for each pixel
|
483 | 204 | equemene |
|
484 | 224 | equemene | float m,rs,re;
|
485 | 224 | equemene |
|
486 | 224 | equemene | m=Mass;
|
487 | 224 | equemene | rs=2.*m;
|
488 | 224 | equemene | re=ExternalRadius;
|
489 | 224 | equemene |
|
490 | 224 | equemene | float bmx,b,h;
|
491 | 224 | equemene | int nh;
|
492 | 224 | equemene |
|
493 | 224 | equemene | // Autosize for image
|
494 | 224 | equemene | bmx=1.25*re;
|
495 | 224 | equemene |
|
496 | 224 | equemene | // Angular step of integration
|
497 | 224 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
498 | 224 | equemene |
|
499 | 224 | equemene | // impact parameter
|
500 | 224 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
501 | 224 | equemene |
|
502 | 224 | equemene | float up,vp,pp,us,vs,ps;
|
503 | 224 | equemene |
|
504 | 224 | equemene | up=0.;
|
505 | 224 | equemene | vp=1.;
|
506 | 224 | equemene |
|
507 | 224 | equemene | pp=0.;
|
508 | 224 | equemene | nh=0;
|
509 | 224 | equemene |
|
510 | 224 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
511 | 224 | equemene |
|
512 | 224 | equemene | // b versus us
|
513 | 224 | equemene | float bvus=fabs(b/us);
|
514 | 224 | equemene | float bvus0=bvus;
|
515 | 224 | equemene | Trajectories[bi*TRACKPOINTS+nh]=bvus;
|
516 | 224 | equemene |
|
517 | 224 | equemene | do
|
518 | 224 | equemene | {
|
519 | 224 | equemene | nh++;
|
520 | 224 | equemene | pp=ps;
|
521 | 224 | equemene | up=us;
|
522 | 224 | equemene | vp=vs;
|
523 | 224 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
524 | 224 | equemene | bvus=fabs(b/us);
|
525 | 224 | equemene | Trajectories[bi*TRACKPOINTS+nh]=bvus;
|
526 | 224 | equemene |
|
527 | 224 | equemene | } while ((bvus>=rs)&&(bvus<=bvus0));
|
528 | 224 | equemene |
|
529 | 224 | equemene | IdLast[bi]=nh;
|
530 | 224 | equemene |
|
531 | 224 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
532 | 224 | equemene |
|
533 | 224 | equemene | }
|
534 | 224 | equemene |
|
535 | 224 | equemene | __kernel void Original(__global float *zImage,__global float *fImage,
|
536 | 224 | equemene | float Mass,float InternalRadius,
|
537 | 224 | equemene | float ExternalRadius,float Angle,
|
538 | 224 | equemene | int Line)
|
539 | 224 | equemene | {
|
540 | 224 | equemene | // Integer Impact Parameter ID
|
541 | 224 | equemene | int bi=get_global_id(0);
|
542 | 224 | equemene | // Integer Impact Parameter Size (half of image)
|
543 | 224 | equemene | int bmaxi=get_global_size(0);
|
544 | 224 | equemene |
|
545 | 224 | equemene | float Trajectories[2048];
|
546 | 224 | equemene |
|
547 | 224 | equemene | // Perform trajectory for each pixel
|
548 | 224 | equemene |
|
549 | 209 | equemene | float m,rs,ri,re,tho;
|
550 | 209 | equemene | int raie,q;
|
551 | 204 | equemene |
|
552 | 204 | equemene | m=Mass;
|
553 | 204 | equemene | rs=2.*m;
|
554 | 204 | equemene | ri=InternalRadius;
|
555 | 204 | equemene | re=ExternalRadius;
|
556 | 204 | equemene | tho=Angle;
|
557 | 204 | equemene | q=-2;
|
558 | 209 | equemene | raie=Line;
|
559 | 204 | equemene |
|
560 | 224 | equemene | float bmx,db,b,h;
|
561 | 204 | equemene | int nh;
|
562 | 204 | equemene |
|
563 | 204 | equemene | // Autosize for image
|
564 | 224 | equemene | bmx=1.25e0f*re;
|
565 | 204 | equemene |
|
566 | 204 | equemene | // Angular step of integration
|
567 | 224 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
568 | 204 | equemene |
|
569 | 204 | equemene | // impact parameter
|
570 | 204 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
571 | 224 | equemene | db=bmx/(2.e0f*(float)bmaxi);
|
572 | 204 | equemene |
|
573 | 204 | equemene | float up,vp,pp,us,vs,ps;
|
574 | 204 | equemene |
|
575 | 209 | equemene | up=0.;
|
576 | 209 | equemene | vp=1.;
|
577 | 204 | equemene |
|
578 | 204 | equemene | pp=0.;
|
579 | 204 | equemene | nh=0;
|
580 | 204 | equemene |
|
581 | 204 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
582 | 204 | equemene |
|
583 | 204 | equemene | // b versus us
|
584 | 204 | equemene | float bvus=fabs(b/us);
|
585 | 204 | equemene | float bvus0=bvus;
|
586 | 224 | equemene | Trajectories[nh]=bvus;
|
587 | 204 | equemene |
|
588 | 204 | equemene | do
|
589 | 204 | equemene | {
|
590 | 204 | equemene | nh++;
|
591 | 204 | equemene | pp=ps;
|
592 | 204 | equemene | up=us;
|
593 | 204 | equemene | vp=vs;
|
594 | 204 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
595 | 204 | equemene | bvus=fabs(b/us);
|
596 | 224 | equemene | Trajectories[nh]=bvus;
|
597 | 204 | equemene |
|
598 | 204 | equemene | } while ((bvus>=rs)&&(bvus<=bvus0));
|
599 | 204 | equemene |
|
600 | 224 | equemene | int imx=(int)(16*bi);
|
601 | 204 | equemene |
|
602 | 224 | equemene | for (int i=0;i<imx;i++)
|
603 | 224 | equemene | {
|
604 | 224 | equemene | float zp=0,fp=0;
|
605 | 224 | equemene | float phi=2.*PI/(float)imx*(float)i;
|
606 | 224 | equemene | float phd=atanp(cos(phi)*sin(tho),cos(tho));
|
607 | 224 | equemene | uint yi=(uint)((float)bi*sin(phi)+bmaxi);
|
608 | 224 | equemene | uint xi=(uint)((float)bi*cos(phi)+bmaxi);
|
609 | 224 | equemene |
|
610 | 224 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
611 | 224 | equemene | float php,nr,r;
|
612 | 224 | equemene |
|
613 | 224 | equemene | do
|
614 | 224 | equemene | {
|
615 | 224 | equemene | php=phd+(float)HalfLap*PI;
|
616 | 224 | equemene | nr=php/h;
|
617 | 224 | equemene | ni=(int)nr;
|
618 | 224 | equemene |
|
619 | 224 | equemene | if (ni<nh)
|
620 | 224 | equemene | {
|
621 | 224 | equemene | r=(Trajectories[ni+1]-Trajectories[ni])*(nr-ni*1.)+Trajectories[ni];
|
622 | 224 | equemene | }
|
623 | 224 | equemene | else
|
624 | 224 | equemene | {
|
625 | 224 | equemene | r=Trajectories[ni];
|
626 | 224 | equemene | }
|
627 | 224 | equemene |
|
628 | 224 | equemene | if ((r<=re)&&(r>=ri))
|
629 | 224 | equemene | {
|
630 | 224 | equemene | ExitOnImpact=1;
|
631 | 224 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
632 | 224 | equemene | }
|
633 | 224 | equemene |
|
634 | 224 | equemene | HalfLap++;
|
635 | 224 | equemene |
|
636 | 224 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
637 | 224 | equemene |
|
638 | 224 | equemene | zImage[yi+2*bmaxi*xi]=zp;
|
639 | 224 | equemene | fImage[yi+2*bmaxi*xi]=fp;
|
640 | 224 | equemene |
|
641 | 224 | equemene | }
|
642 | 224 | equemene |
|
643 | 204 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
644 | 199 | equemene |
|
645 | 199 | equemene | }
|
646 | 211 | equemene | """
|
647 | 199 | equemene | |
648 | 217 | equemene | def KernelCodeCuda(): |
649 | 217 | equemene | BlobCUDA= """
|
650 | 217 | equemene |
|
651 | 217 | equemene | #define PI (float)3.14159265359
|
652 | 217 | equemene | #define nbr 256
|
653 | 217 | equemene |
|
654 | 217 | equemene | #define EINSTEIN 0
|
655 | 217 | equemene | #define NEWTON 1
|
656 | 217 | equemene |
|
657 | 224 | equemene | #ifdef SETTRACKPOINTS
|
658 | 224 | equemene | #define TRACKPOINTS SETTRACKPOINTS
|
659 | 224 | equemene | #else
|
660 | 224 | equemene | #define TRACKPOINTS
|
661 | 224 | equemene | #endif
|
662 | 217 | equemene |
|
663 | 217 | equemene | __device__ float nothing(float x)
|
664 | 217 | equemene | {
|
665 | 217 | equemene | return(x);
|
666 | 217 | equemene | }
|
667 | 217 | equemene |
|
668 | 217 | equemene | __device__ float atanp(float x,float y)
|
669 | 217 | equemene | {
|
670 | 217 | equemene | float angle;
|
671 | 217 | equemene |
|
672 | 217 | equemene | angle=atan2(y,x);
|
673 | 217 | equemene |
|
674 | 217 | equemene | if (angle<0.e0f)
|
675 | 217 | equemene | {
|
676 | 217 | equemene | angle+=(float)2.e0f*PI;
|
677 | 217 | equemene | }
|
678 | 217 | equemene |
|
679 | 217 | equemene | return(angle);
|
680 | 217 | equemene | }
|
681 | 217 | equemene |
|
682 | 217 | equemene | __device__ float f(float v)
|
683 | 217 | equemene | {
|
684 | 217 | equemene | return(v);
|
685 | 217 | equemene | }
|
686 | 217 | equemene |
|
687 | 217 | equemene | #if PHYSICS == NEWTON
|
688 | 217 | equemene | __device__ float g(float u,float m,float b)
|
689 | 217 | equemene | {
|
690 | 217 | equemene | return (-u);
|
691 | 217 | equemene | }
|
692 | 217 | equemene | #else
|
693 | 217 | equemene | __device__ float g(float u,float m,float b)
|
694 | 217 | equemene | {
|
695 | 217 | equemene | return (3.e0f*m/b*pow(u,2)-u);
|
696 | 217 | equemene | }
|
697 | 217 | equemene | #endif
|
698 | 217 | equemene |
|
699 | 217 | equemene | __device__ void calcul(float *us,float *vs,float up,float vp,
|
700 | 217 | equemene | float h,float m,float b)
|
701 | 217 | equemene | {
|
702 | 217 | equemene | float c0,c1,c2,c3,d0,d1,d2,d3;
|
703 | 217 | equemene |
|
704 | 217 | equemene | c0=h*f(vp);
|
705 | 217 | equemene | c1=h*f(vp+c0/2.);
|
706 | 217 | equemene | c2=h*f(vp+c1/2.);
|
707 | 217 | equemene | c3=h*f(vp+c2);
|
708 | 217 | equemene | d0=h*g(up,m,b);
|
709 | 217 | equemene | d1=h*g(up+d0/2.,m,b);
|
710 | 217 | equemene | d2=h*g(up+d1/2.,m,b);
|
711 | 217 | equemene | d3=h*g(up+d2,m,b);
|
712 | 217 | equemene |
|
713 | 217 | equemene | *us=up+(c0+2.*c1+2.*c2+c3)/6.;
|
714 | 217 | equemene | *vs=vp+(d0+2.*d1+2.*d2+d3)/6.;
|
715 | 217 | equemene | }
|
716 | 217 | equemene |
|
717 | 217 | equemene | __device__ void rungekutta(float *ps,float *us,float *vs,
|
718 | 217 | equemene | float pp,float up,float vp,
|
719 | 217 | equemene | float h,float m,float b)
|
720 | 217 | equemene | {
|
721 | 217 | equemene | calcul(us,vs,up,vp,h,m,b);
|
722 | 217 | equemene | *ps=pp+h;
|
723 | 217 | equemene | }
|
724 | 217 | equemene |
|
725 | 217 | equemene | __device__ float decalage_spectral(float r,float b,float phi,
|
726 | 217 | equemene | float tho,float m)
|
727 | 217 | equemene | {
|
728 | 217 | equemene | return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi)));
|
729 | 217 | equemene | }
|
730 | 217 | equemene |
|
731 | 217 | equemene | __device__ float spectre(float rf,int q,float b,float db,
|
732 | 217 | equemene | float h,float r,float m,float bss)
|
733 | 217 | equemene | {
|
734 | 217 | equemene | float flx;
|
735 | 217 | equemene |
|
736 | 221 | equemene | // flx=exp(q*log(r/m))*pow(rf,4)*b*db*h;
|
737 | 221 | equemene | flx=exp(q*log(r/m)+4.*log(rf))*b*db*h;
|
738 | 217 | equemene | return(flx);
|
739 | 217 | equemene | }
|
740 | 217 | equemene |
|
741 | 217 | equemene | __device__ float spectre_cn(float rf32,float b32,float db32,
|
742 | 217 | equemene | float h32,float r32,float m32,float bss32)
|
743 | 217 | equemene | {
|
744 | 217 | equemene |
|
745 | 217 | equemene | #define MYFLOAT float
|
746 | 217 | equemene |
|
747 | 217 | equemene | MYFLOAT rf=(MYFLOAT)(rf32);
|
748 | 217 | equemene | MYFLOAT b=(MYFLOAT)(b32);
|
749 | 217 | equemene | MYFLOAT db=(MYFLOAT)(db32);
|
750 | 217 | equemene | MYFLOAT h=(MYFLOAT)(h32);
|
751 | 217 | equemene | MYFLOAT r=(MYFLOAT)(r32);
|
752 | 217 | equemene | MYFLOAT m=(MYFLOAT)(m32);
|
753 | 217 | equemene | MYFLOAT bss=(MYFLOAT)(bss32);
|
754 | 217 | equemene |
|
755 | 217 | equemene | MYFLOAT flx;
|
756 | 217 | equemene | MYFLOAT nu_rec,nu_em,qu,temp_em,flux_int;
|
757 | 217 | equemene | int fi,posfreq;
|
758 | 217 | equemene |
|
759 | 217 | equemene | #define planck 6.62e-34
|
760 | 217 | equemene | #define k 1.38e-23
|
761 | 217 | equemene | #define c2 9.e16
|
762 | 217 | equemene | #define temp 3.e7
|
763 | 217 | equemene | #define m_point 1.
|
764 | 217 | equemene |
|
765 | 217 | equemene | #define lplanck (log(6.62)-34.*log(10.))
|
766 | 217 | equemene | #define lk (log(1.38)-23.*log(10.))
|
767 | 217 | equemene | #define lc2 (log(9.)+16.*log(10.))
|
768 | 217 | equemene |
|
769 | 217 | equemene | MYFLOAT v=1.-3./r;
|
770 | 217 | equemene |
|
771 | 217 | equemene | qu=1./sqrt((1.-3./r)*r)*(sqrt(r)-sqrt(6.)+sqrt(3.)/2.*log((sqrt(r)+sqrt(3.))/(sqrt(r)-sqrt(3.))* 0.17157287525380988 ));
|
772 | 217 | equemene |
|
773 | 217 | equemene | temp_em=temp*sqrt(m)*exp(0.25*log(m_point)-0.75*log(r)-0.125*log(v)+0.25*log(fabs(qu)));
|
774 | 217 | equemene |
|
775 | 217 | equemene | flux_int=0.;
|
776 | 217 | equemene | flx=0.;
|
777 | 217 | equemene |
|
778 | 217 | equemene | for (fi=0;fi<nbr;fi++)
|
779 | 217 | equemene | {
|
780 | 217 | equemene | nu_em=bss*(MYFLOAT)fi/(MYFLOAT)nbr;
|
781 | 217 | equemene | nu_rec=nu_em*rf;
|
782 | 217 | equemene | posfreq=(int)(nu_rec*(MYFLOAT)nbr/bss);
|
783 | 217 | equemene | if ((posfreq>0)&&(posfreq<nbr))
|
784 | 217 | equemene | {
|
785 | 217 | equemene | // Initial version
|
786 | 217 | equemene | // flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.);
|
787 | 217 | equemene | // Version with log used
|
788 | 217 | equemene | //flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.);
|
789 | 217 | equemene | // flux_int*=pow(rf,3)*b*db*h;
|
790 | 217 | equemene | //flux_int*=exp(3.*log(rf))*b*db*h;
|
791 | 217 | equemene | flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.)*exp(3.*log(rf))*b*db*h;
|
792 | 217 | equemene |
|
793 | 217 | equemene | flx+=flux_int;
|
794 | 217 | equemene | }
|
795 | 217 | equemene | }
|
796 | 217 | equemene |
|
797 | 217 | equemene | return((float)(flx));
|
798 | 217 | equemene | }
|
799 | 217 | equemene |
|
800 | 217 | equemene | __device__ void impact(float phi,float r,float b,float tho,float m,
|
801 | 217 | equemene | float *zp,float *fp,
|
802 | 217 | equemene | int q,float db,
|
803 | 217 | equemene | float h,int raie)
|
804 | 217 | equemene | {
|
805 | 217 | equemene | float flx,rf,bss;
|
806 | 217 | equemene |
|
807 | 217 | equemene | rf=decalage_spectral(r,b,phi,tho,m);
|
808 | 217 | equemene |
|
809 | 217 | equemene | if (raie==0)
|
810 | 217 | equemene | {
|
811 | 217 | equemene | bss=1.e19;
|
812 | 217 | equemene | flx=spectre_cn(rf,b,db,h,r,m,bss);
|
813 | 217 | equemene | }
|
814 | 217 | equemene | else
|
815 | 217 | equemene | {
|
816 | 217 | equemene | bss=2.;
|
817 | 217 | equemene | flx=spectre(rf,q,b,db,h,r,m,bss);
|
818 | 217 | equemene | }
|
819 | 217 | equemene |
|
820 | 217 | equemene | *zp=1./rf;
|
821 | 217 | equemene | *fp=flx;
|
822 | 217 | equemene |
|
823 | 217 | equemene | }
|
824 | 217 | equemene |
|
825 | 217 | equemene | __global__ void EachPixel(float *zImage,float *fImage,
|
826 | 217 | equemene | float Mass,float InternalRadius,
|
827 | 217 | equemene | float ExternalRadius,float Angle,
|
828 | 217 | equemene | int Line)
|
829 | 217 | equemene | {
|
830 | 218 | equemene | uint xi=(uint)(blockIdx.x*blockDim.x+threadIdx.x);
|
831 | 218 | equemene | uint yi=(uint)(blockIdx.y*blockDim.y+threadIdx.y);
|
832 | 217 | equemene | uint sizex=(uint)gridDim.x*blockDim.x;
|
833 | 217 | equemene | uint sizey=(uint)gridDim.y*blockDim.y;
|
834 | 217 | equemene |
|
835 | 217 | equemene | // Perform trajectory for each pixel, exit on hit
|
836 | 217 | equemene |
|
837 | 217 | equemene | float m,rs,ri,re,tho;
|
838 | 217 | equemene | int q,raie;
|
839 | 217 | equemene |
|
840 | 217 | equemene | m=Mass;
|
841 | 217 | equemene | rs=2.*m;
|
842 | 217 | equemene | ri=InternalRadius;
|
843 | 217 | equemene | re=ExternalRadius;
|
844 | 217 | equemene | tho=Angle;
|
845 | 217 | equemene | q=-2;
|
846 | 217 | equemene | raie=Line;
|
847 | 217 | equemene |
|
848 | 217 | equemene | float d,bmx,db,b,h;
|
849 | 218 | equemene | float rp0,rpp,rps;
|
850 | 217 | equemene | float phi,thi,phd,php,nr,r;
|
851 | 217 | equemene | int nh;
|
852 | 217 | equemene | float zp,fp;
|
853 | 217 | equemene |
|
854 | 217 | equemene | // Autosize for image
|
855 | 217 | equemene | bmx=1.25*re;
|
856 | 217 | equemene | b=0.;
|
857 | 217 | equemene |
|
858 | 217 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
859 | 217 | equemene |
|
860 | 217 | equemene | // set origin as center of image
|
861 | 217 | equemene | float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
862 | 217 | equemene | float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
863 | 217 | equemene | // angle extracted from cylindric symmetry
|
864 | 217 | equemene | phi=atanp(x,y);
|
865 | 217 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
866 | 217 | equemene |
|
867 | 217 | equemene | float up,vp,pp,us,vs,ps;
|
868 | 217 | equemene |
|
869 | 217 | equemene | // impact parameter
|
870 | 217 | equemene | b=sqrt(x*x+y*y)*(float)2.e0f/(float)sizex*bmx;
|
871 | 217 | equemene | // step of impact parameter;
|
872 | 217 | equemene | // db=bmx/(float)(sizex/2);
|
873 | 217 | equemene | db=bmx/(float)(sizex);
|
874 | 217 | equemene |
|
875 | 217 | equemene | up=0.;
|
876 | 217 | equemene | vp=1.;
|
877 | 217 | equemene |
|
878 | 217 | equemene | pp=0.;
|
879 | 217 | equemene | nh=0;
|
880 | 217 | equemene |
|
881 | 217 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
882 | 217 | equemene |
|
883 | 218 | equemene | rps=fabs(b/us);
|
884 | 218 | equemene | rp0=rps;
|
885 | 217 | equemene |
|
886 | 217 | equemene | int ExitOnImpact=0;
|
887 | 217 | equemene |
|
888 | 217 | equemene | do
|
889 | 217 | equemene | {
|
890 | 217 | equemene | nh++;
|
891 | 217 | equemene | pp=ps;
|
892 | 217 | equemene | up=us;
|
893 | 217 | equemene | vp=vs;
|
894 | 218 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
895 | 218 | equemene | rpp=rps;
|
896 | 218 | equemene | rps=fabs(b/us);
|
897 | 218 | equemene | ExitOnImpact = ((fmod(pp,PI)<fmod(phd,PI))&&(fmod(ps,PI)>fmod(phd,PI)))&&(rps>ri)&&(rps<re)?1:0;
|
898 | 217 | equemene |
|
899 | 218 | equemene | } while ((rps>=rs)&&(rps<=rp0)&&(ExitOnImpact==0));
|
900 | 217 | equemene |
|
901 | 217 | equemene | if (ExitOnImpact==1) {
|
902 | 218 | equemene | impact(phi,rpp,b,tho,m,&zp,&fp,q,db,h,raie);
|
903 | 217 | equemene | }
|
904 | 217 | equemene | else
|
905 | 217 | equemene | {
|
906 | 217 | equemene | zp=0.;
|
907 | 217 | equemene | fp=0.;
|
908 | 217 | equemene | }
|
909 | 217 | equemene |
|
910 | 218 | equemene | __syncthreads();
|
911 | 218 | equemene |
|
912 | 217 | equemene | zImage[yi+sizex*xi]=(float)zp;
|
913 | 217 | equemene | fImage[yi+sizex*xi]=(float)fp;
|
914 | 217 | equemene | }
|
915 | 217 | equemene |
|
916 | 217 | equemene | __global__ void Pixel(float *zImage,float *fImage,
|
917 | 217 | equemene | float *Trajectories,int *IdLast,
|
918 | 224 | equemene | uint ImpactParameter,
|
919 | 217 | equemene | float Mass,float InternalRadius,
|
920 | 217 | equemene | float ExternalRadius,float Angle,
|
921 | 217 | equemene | int Line)
|
922 | 217 | equemene | {
|
923 | 219 | equemene | uint xi=(uint)(blockIdx.x*blockDim.x+threadIdx.x);
|
924 | 219 | equemene | uint yi=(uint)(blockIdx.y*blockDim.y+threadIdx.y);
|
925 | 219 | equemene | uint sizex=(uint)gridDim.x*blockDim.x;
|
926 | 219 | equemene | uint sizey=(uint)gridDim.y*blockDim.y;
|
927 | 217 | equemene |
|
928 | 217 | equemene | // Perform trajectory for each pixel
|
929 | 217 | equemene |
|
930 | 217 | equemene | float m,rs,ri,re,tho;
|
931 | 217 | equemene | int q,raie;
|
932 | 217 | equemene |
|
933 | 217 | equemene | m=Mass;
|
934 | 217 | equemene | rs=2.*m;
|
935 | 217 | equemene | ri=InternalRadius;
|
936 | 217 | equemene | re=ExternalRadius;
|
937 | 217 | equemene | tho=Angle;
|
938 | 217 | equemene | q=-2;
|
939 | 217 | equemene | raie=Line;
|
940 | 217 | equemene |
|
941 | 217 | equemene | float d,bmx,db,b,h;
|
942 | 217 | equemene | float phi,thi,phd,php,nr,r;
|
943 | 217 | equemene | int nh;
|
944 | 217 | equemene | float zp=0,fp=0;
|
945 | 217 | equemene | // Autosize for image, 25% greater than external radius
|
946 | 217 | equemene | bmx=1.25*re;
|
947 | 217 | equemene |
|
948 | 217 | equemene | // Angular step of integration
|
949 | 224 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
950 | 217 | equemene |
|
951 | 217 | equemene | // Step of Impact Parameter
|
952 | 217 | equemene | db=bmx/(2.e0*(float)ImpactParameter);
|
953 | 217 | equemene |
|
954 | 217 | equemene | // set origin as center of image
|
955 | 217 | equemene | float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
956 | 217 | equemene | float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
957 | 217 | equemene | // angle extracted from cylindric symmetry
|
958 | 217 | equemene | phi=atanp(x,y);
|
959 | 217 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
960 | 217 | equemene |
|
961 | 217 | equemene | // Real Impact Parameter
|
962 | 217 | equemene | b=sqrt(x*x+y*y)*bmx/(float)ImpactParameter;
|
963 | 217 | equemene |
|
964 | 217 | equemene | // Integer Impact Parameter
|
965 | 217 | equemene | uint bi=(uint)sqrt(x*x+y*y);
|
966 | 217 | equemene |
|
967 | 217 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
968 | 217 | equemene |
|
969 | 217 | equemene | if (bi<ImpactParameter)
|
970 | 217 | equemene | {
|
971 | 217 | equemene | do
|
972 | 217 | equemene | {
|
973 | 217 | equemene | php=phd+(float)HalfLap*PI;
|
974 | 217 | equemene | nr=php/h;
|
975 | 217 | equemene | ni=(int)nr;
|
976 | 217 | equemene |
|
977 | 217 | equemene | if (ni<IdLast[bi])
|
978 | 217 | equemene | {
|
979 | 224 | equemene | r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.)+Trajectories[bi*TRACKPOINTS+ni];
|
980 | 217 | equemene | }
|
981 | 217 | equemene | else
|
982 | 217 | equemene | {
|
983 | 224 | equemene | r=Trajectories[bi*TRACKPOINTS+ni];
|
984 | 217 | equemene | }
|
985 | 217 | equemene |
|
986 | 217 | equemene | if ((r<=re)&&(r>=ri))
|
987 | 217 | equemene | {
|
988 | 217 | equemene | ExitOnImpact=1;
|
989 | 217 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
990 | 217 | equemene | }
|
991 | 217 | equemene |
|
992 | 217 | equemene | HalfLap++;
|
993 | 217 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
994 | 217 | equemene |
|
995 | 217 | equemene | }
|
996 | 217 | equemene |
|
997 | 217 | equemene | zImage[yi+sizex*xi]=zp;
|
998 | 217 | equemene | fImage[yi+sizex*xi]=fp;
|
999 | 217 | equemene | }
|
1000 | 217 | equemene |
|
1001 | 217 | equemene | __global__ void Circle(float *Trajectories,int *IdLast,
|
1002 | 217 | equemene | float *zImage,float *fImage,
|
1003 | 217 | equemene | float Mass,float InternalRadius,
|
1004 | 217 | equemene | float ExternalRadius,float Angle,
|
1005 | 217 | equemene | int Line)
|
1006 | 217 | equemene | {
|
1007 | 217 | equemene | // Integer Impact Parameter ID
|
1008 | 219 | equemene | int bi=blockIdx.x*blockDim.x+threadIdx.x;
|
1009 | 217 | equemene | // Integer points on circle
|
1010 | 219 | equemene | int i=blockIdx.y*blockDim.y+threadIdx.y;
|
1011 | 217 | equemene | // Integer Impact Parameter Size (half of image)
|
1012 | 217 | equemene | int bmaxi=gridDim.x*blockDim.x;
|
1013 | 217 | equemene | // Integer Points on circle
|
1014 | 217 | equemene | int imx=gridDim.y*blockDim.y;
|
1015 | 217 | equemene |
|
1016 | 217 | equemene | // Perform trajectory for each pixel
|
1017 | 217 | equemene |
|
1018 | 217 | equemene | float m,rs,ri,re,tho;
|
1019 | 217 | equemene | int q,raie;
|
1020 | 217 | equemene |
|
1021 | 217 | equemene | m=Mass;
|
1022 | 217 | equemene | rs=2.*m;
|
1023 | 217 | equemene | ri=InternalRadius;
|
1024 | 217 | equemene | re=ExternalRadius;
|
1025 | 217 | equemene | tho=Angle;
|
1026 | 217 | equemene | raie=Line;
|
1027 | 217 | equemene |
|
1028 | 217 | equemene | float bmx,db,b,h;
|
1029 | 217 | equemene | float phi,thi,phd;
|
1030 | 217 | equemene | int nh;
|
1031 | 217 | equemene | float zp=0,fp=0;
|
1032 | 217 | equemene |
|
1033 | 217 | equemene | // Autosize for image
|
1034 | 217 | equemene | bmx=1.25*re;
|
1035 | 217 | equemene |
|
1036 | 217 | equemene | // Angular step of integration
|
1037 | 224 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
1038 | 217 | equemene |
|
1039 | 217 | equemene | // impact parameter
|
1040 | 217 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
1041 | 217 | equemene | db=bmx/(2.e0*(float)bmaxi);
|
1042 | 217 | equemene |
|
1043 | 217 | equemene | phi=2.*PI/(float)imx*(float)i;
|
1044 | 217 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
1045 | 217 | equemene | int yi=(int)((float)bi*sin(phi))+bmaxi;
|
1046 | 217 | equemene | int xi=(int)((float)bi*cos(phi))+bmaxi;
|
1047 | 217 | equemene |
|
1048 | 217 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
1049 | 217 | equemene | float php,nr,r;
|
1050 | 217 | equemene |
|
1051 | 217 | equemene | do
|
1052 | 217 | equemene | {
|
1053 | 217 | equemene | php=phd+(float)HalfLap*PI;
|
1054 | 217 | equemene | nr=php/h;
|
1055 | 217 | equemene | ni=(int)nr;
|
1056 | 217 | equemene |
|
1057 | 217 | equemene | if (ni<IdLast[bi])
|
1058 | 217 | equemene | {
|
1059 | 224 | equemene | r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.)+Trajectories[bi*TRACKPOINTS+ni];
|
1060 | 217 | equemene | }
|
1061 | 217 | equemene | else
|
1062 | 217 | equemene | {
|
1063 | 224 | equemene | r=Trajectories[bi*TRACKPOINTS+ni];
|
1064 | 217 | equemene | }
|
1065 | 217 | equemene |
|
1066 | 217 | equemene | if ((r<=re)&&(r>=ri))
|
1067 | 217 | equemene | {
|
1068 | 217 | equemene | ExitOnImpact=1;
|
1069 | 217 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
1070 | 217 | equemene | }
|
1071 | 217 | equemene |
|
1072 | 217 | equemene | HalfLap++;
|
1073 | 217 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
1074 | 217 | equemene |
|
1075 | 217 | equemene | zImage[yi+2*bmaxi*xi]=zp;
|
1076 | 217 | equemene | fImage[yi+2*bmaxi*xi]=fp;
|
1077 | 217 | equemene |
|
1078 | 217 | equemene | }
|
1079 | 217 | equemene |
|
1080 | 224 | equemene | __global__ void Trajectory(float *Trajectories,int *IdLast,
|
1081 | 217 | equemene | float Mass,float InternalRadius,
|
1082 | 217 | equemene | float ExternalRadius,float Angle,
|
1083 | 217 | equemene | int Line)
|
1084 | 217 | equemene | {
|
1085 | 217 | equemene | // Integer Impact Parameter ID
|
1086 | 219 | equemene | int bi=blockIdx.x*blockDim.x+threadIdx.x;
|
1087 | 217 | equemene | // Integer Impact Parameter Size (half of image)
|
1088 | 217 | equemene | int bmaxi=gridDim.x*blockDim.x;
|
1089 | 217 | equemene |
|
1090 | 217 | equemene | // Perform trajectory for each pixel
|
1091 | 217 | equemene |
|
1092 | 217 | equemene | float m,rs,ri,re,tho;
|
1093 | 217 | equemene | int raie,q;
|
1094 | 217 | equemene |
|
1095 | 217 | equemene | m=Mass;
|
1096 | 217 | equemene | rs=2.*m;
|
1097 | 217 | equemene | ri=InternalRadius;
|
1098 | 217 | equemene | re=ExternalRadius;
|
1099 | 217 | equemene | tho=Angle;
|
1100 | 217 | equemene | q=-2;
|
1101 | 217 | equemene | raie=Line;
|
1102 | 217 | equemene |
|
1103 | 217 | equemene | float d,bmx,db,b,h;
|
1104 | 217 | equemene | float phi,thi,phd,php,nr,r;
|
1105 | 217 | equemene | int nh;
|
1106 | 217 | equemene | float zp,fp;
|
1107 | 217 | equemene |
|
1108 | 217 | equemene | // Autosize for image
|
1109 | 217 | equemene | bmx=1.25*re;
|
1110 | 217 | equemene |
|
1111 | 217 | equemene | // Angular step of integration
|
1112 | 224 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
1113 | 217 | equemene |
|
1114 | 217 | equemene | // impact parameter
|
1115 | 217 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
1116 | 217 | equemene |
|
1117 | 217 | equemene | float up,vp,pp,us,vs,ps;
|
1118 | 217 | equemene |
|
1119 | 217 | equemene | up=0.;
|
1120 | 217 | equemene | vp=1.;
|
1121 | 217 | equemene |
|
1122 | 217 | equemene | pp=0.;
|
1123 | 217 | equemene | nh=0;
|
1124 | 217 | equemene |
|
1125 | 217 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1126 | 217 | equemene |
|
1127 | 217 | equemene | // b versus us
|
1128 | 217 | equemene | float bvus=fabs(b/us);
|
1129 | 217 | equemene | float bvus0=bvus;
|
1130 | 224 | equemene | Trajectories[bi*TRACKPOINTS+nh]=bvus;
|
1131 | 217 | equemene |
|
1132 | 217 | equemene | do
|
1133 | 217 | equemene | {
|
1134 | 217 | equemene | nh++;
|
1135 | 217 | equemene | pp=ps;
|
1136 | 217 | equemene | up=us;
|
1137 | 217 | equemene | vp=vs;
|
1138 | 217 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1139 | 217 | equemene | bvus=fabs(b/us);
|
1140 | 224 | equemene | Trajectories[bi*TRACKPOINTS+nh]=bvus;
|
1141 | 217 | equemene |
|
1142 | 217 | equemene | } while ((bvus>=rs)&&(bvus<=bvus0));
|
1143 | 217 | equemene |
|
1144 | 217 | equemene | IdLast[bi]=nh;
|
1145 | 217 | equemene |
|
1146 | 217 | equemene | }
|
1147 | 224 | equemene |
|
1148 | 224 | equemene | __global__ void Original(float *zImage,float *fImage,
|
1149 | 224 | equemene | float Mass,float InternalRadius,
|
1150 | 224 | equemene | float ExternalRadius,float Angle,
|
1151 | 224 | equemene | int Line)
|
1152 | 224 | equemene | {
|
1153 | 224 | equemene | // Integer Impact Parameter ID
|
1154 | 224 | equemene | int bi=blockIdx.x*blockDim.x+threadIdx.x;
|
1155 | 224 | equemene |
|
1156 | 224 | equemene | // Integer Impact Parameter Size (half of image)
|
1157 | 224 | equemene | int bmaxi=gridDim.x*blockDim.x;
|
1158 | 224 | equemene |
|
1159 | 224 | equemene | float Trajectories[2048];
|
1160 | 224 | equemene |
|
1161 | 224 | equemene | // Perform trajectory for each pixel
|
1162 | 224 | equemene |
|
1163 | 224 | equemene | float m,rs,ri,re,tho;
|
1164 | 224 | equemene | int raie,q;
|
1165 | 224 | equemene |
|
1166 | 224 | equemene | m=Mass;
|
1167 | 224 | equemene | rs=2.*m;
|
1168 | 224 | equemene | ri=InternalRadius;
|
1169 | 224 | equemene | re=ExternalRadius;
|
1170 | 224 | equemene | tho=Angle;
|
1171 | 224 | equemene | q=-2;
|
1172 | 224 | equemene | raie=Line;
|
1173 | 224 | equemene |
|
1174 | 224 | equemene | float bmx,db,b,h;
|
1175 | 224 | equemene | int nh;
|
1176 | 224 | equemene |
|
1177 | 224 | equemene | // Autosize for image
|
1178 | 224 | equemene | bmx=1.25e0f*re;
|
1179 | 224 | equemene |
|
1180 | 224 | equemene | // Angular step of integration
|
1181 | 224 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
1182 | 224 | equemene |
|
1183 | 224 | equemene | // impact parameter
|
1184 | 224 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
1185 | 224 | equemene | db=bmx/(2.e0f*(float)bmaxi);
|
1186 | 224 | equemene |
|
1187 | 224 | equemene | float up,vp,pp,us,vs,ps;
|
1188 | 224 | equemene |
|
1189 | 224 | equemene | up=0.;
|
1190 | 224 | equemene | vp=1.;
|
1191 | 224 | equemene |
|
1192 | 224 | equemene | pp=0.;
|
1193 | 224 | equemene | nh=0;
|
1194 | 224 | equemene |
|
1195 | 224 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1196 | 224 | equemene |
|
1197 | 224 | equemene | // b versus us
|
1198 | 224 | equemene | float bvus=fabs(b/us);
|
1199 | 224 | equemene | float bvus0=bvus;
|
1200 | 224 | equemene | Trajectories[nh]=bvus;
|
1201 | 224 | equemene |
|
1202 | 224 | equemene | do
|
1203 | 224 | equemene | {
|
1204 | 224 | equemene | nh++;
|
1205 | 224 | equemene | pp=ps;
|
1206 | 224 | equemene | up=us;
|
1207 | 224 | equemene | vp=vs;
|
1208 | 224 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1209 | 224 | equemene | bvus=fabs(b/us);
|
1210 | 224 | equemene | Trajectories[nh]=bvus;
|
1211 | 224 | equemene |
|
1212 | 224 | equemene | } while ((bvus>=rs)&&(bvus<=bvus0));
|
1213 | 224 | equemene |
|
1214 | 224 | equemene | int imx=(int)(16*bi);
|
1215 | 224 | equemene |
|
1216 | 224 | equemene | for (int i=0;i<imx;i++)
|
1217 | 224 | equemene | {
|
1218 | 224 | equemene | float zp=0,fp=0;
|
1219 | 224 | equemene | float phi=2.*PI/(float)imx*(float)i;
|
1220 | 224 | equemene | float phd=atanp(cos(phi)*sin(tho),cos(tho));
|
1221 | 224 | equemene | uint yi=(uint)((float)bi*sin(phi)+bmaxi);
|
1222 | 224 | equemene | uint xi=(uint)((float)bi*cos(phi)+bmaxi);
|
1223 | 224 | equemene |
|
1224 | 224 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
1225 | 224 | equemene | float php,nr,r;
|
1226 | 224 | equemene |
|
1227 | 224 | equemene | do
|
1228 | 224 | equemene | {
|
1229 | 224 | equemene | php=phd+(float)HalfLap*PI;
|
1230 | 224 | equemene | nr=php/h;
|
1231 | 224 | equemene | ni=(int)nr;
|
1232 | 224 | equemene |
|
1233 | 224 | equemene | if (ni<nh)
|
1234 | 224 | equemene | {
|
1235 | 224 | equemene | r=(Trajectories[ni+1]-Trajectories[ni])*(nr-ni*1.)+Trajectories[ni];
|
1236 | 224 | equemene | }
|
1237 | 224 | equemene | else
|
1238 | 224 | equemene | {
|
1239 | 224 | equemene | r=Trajectories[ni];
|
1240 | 224 | equemene | }
|
1241 | 224 | equemene |
|
1242 | 224 | equemene | if ((r<=re)&&(r>=ri))
|
1243 | 224 | equemene | {
|
1244 | 224 | equemene | ExitOnImpact=1;
|
1245 | 224 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
1246 | 224 | equemene | }
|
1247 | 224 | equemene |
|
1248 | 224 | equemene | HalfLap++;
|
1249 | 224 | equemene |
|
1250 | 224 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
1251 | 224 | equemene |
|
1252 | 224 | equemene | __syncthreads();
|
1253 | 224 | equemene |
|
1254 | 224 | equemene | zImage[yi+2*bmaxi*xi]=zp;
|
1255 | 224 | equemene | fImage[yi+2*bmaxi*xi]=fp;
|
1256 | 224 | equemene |
|
1257 | 224 | equemene | }
|
1258 | 224 | equemene |
|
1259 | 224 | equemene | }
|
1260 | 217 | equemene | """
|
1261 | 217 | equemene | return(BlobCUDA)
|
1262 | 217 | equemene | |
1263 | 211 | equemene | # def ImageOutput(sigma,prefix):
|
1264 | 211 | equemene | # from PIL import Image
|
1265 | 211 | equemene | # Max=sigma.max()
|
1266 | 211 | equemene | # Min=sigma.min()
|
1267 | 199 | equemene | |
1268 | 211 | equemene | # # Normalize value as 8bits Integer
|
1269 | 211 | equemene | # SigmaInt=(255*(sigma-Min)/(Max-Min)).astype('uint8')
|
1270 | 211 | equemene | # image = Image.fromarray(SigmaInt)
|
1271 | 211 | equemene | # image.save("%s.jpg" % prefix)
|
1272 | 211 | equemene | |
1273 | 211 | equemene | def ImageOutput(sigma,prefix,Colors): |
1274 | 211 | equemene | import matplotlib.pyplot as plt |
1275 | 222 | equemene | start_time=time.time() |
1276 | 211 | equemene | if Colors == 'Red2Yellow': |
1277 | 211 | equemene | plt.imsave("%s.png" % prefix, sigma, cmap='afmhot') |
1278 | 211 | equemene | else:
|
1279 | 211 | equemene | plt.imsave("%s.png" % prefix, sigma, cmap='Greys_r') |
1280 | 222 | equemene | save_time = time.time()-start_time |
1281 | 222 | equemene | print("Save Time : %f" % save_time)
|
1282 | 211 | equemene | |
1283 | 204 | equemene | def BlackHoleCL(zImage,fImage,InputCL): |
1284 | 199 | equemene | |
1285 | 199 | equemene | kernel_params = {} |
1286 | 199 | equemene | |
1287 | 204 | equemene | print(InputCL) |
1288 | 204 | equemene | |
1289 | 204 | equemene | Device=InputCL['Device']
|
1290 | 204 | equemene | GpuStyle=InputCL['GpuStyle']
|
1291 | 204 | equemene | VariableType=InputCL['VariableType']
|
1292 | 204 | equemene | Size=InputCL['Size']
|
1293 | 204 | equemene | Mass=InputCL['Mass']
|
1294 | 204 | equemene | InternalRadius=InputCL['InternalRadius']
|
1295 | 204 | equemene | ExternalRadius=InputCL['ExternalRadius']
|
1296 | 204 | equemene | Angle=InputCL['Angle']
|
1297 | 204 | equemene | Method=InputCL['Method']
|
1298 | 204 | equemene | TrackPoints=InputCL['TrackPoints']
|
1299 | 211 | equemene | Physics=InputCL['Physics']
|
1300 | 204 | equemene | |
1301 | 211 | equemene | PhysicsList=DictionariesAPI() |
1302 | 211 | equemene | |
1303 | 204 | equemene | if InputCL['BlackBody']: |
1304 | 209 | equemene | # Spectrum is Black Body one
|
1305 | 209 | equemene | Line=0
|
1306 | 204 | equemene | else:
|
1307 | 209 | equemene | # Spectrum is Monochromatic Line one
|
1308 | 209 | equemene | Line=1
|
1309 | 204 | equemene | |
1310 | 217 | equemene | Trajectories=numpy.zeros((int(InputCL['Size']/2),InputCL['TrackPoints']),dtype=numpy.float32) |
1311 | 217 | equemene | IdLast=numpy.zeros(int(InputCL['Size']/2),dtype=numpy.int32) |
1312 | 204 | equemene | |
1313 | 199 | equemene | # Je detecte un peripherique GPU dans la liste des peripheriques
|
1314 | 199 | equemene | Id=0
|
1315 | 199 | equemene | HasXPU=False
|
1316 | 199 | equemene | for platform in cl.get_platforms(): |
1317 | 199 | equemene | for device in platform.get_devices(): |
1318 | 199 | equemene | if Id==Device:
|
1319 | 199 | equemene | XPU=device |
1320 | 217 | equemene | print("CPU/GPU selected: ",device.name.lstrip())
|
1321 | 199 | equemene | HasXPU=True
|
1322 | 199 | equemene | Id+=1
|
1323 | 199 | equemene | |
1324 | 199 | equemene | if HasXPU==False: |
1325 | 217 | equemene | print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
1326 | 199 | equemene | sys.exit() |
1327 | 199 | equemene | |
1328 | 199 | equemene | ctx = cl.Context([XPU]) |
1329 | 199 | equemene | queue = cl.CommandQueue(ctx, |
1330 | 199 | equemene | properties=cl.command_queue_properties.PROFILING_ENABLE) |
1331 | 199 | equemene | |
1332 | 199 | equemene | |
1333 | 211 | equemene | # BlackHoleCL = cl.Program(ctx,KERNEL_CODE.substitute(kernel_params)).build()
|
1334 | 211 | equemene | |
1335 | 224 | equemene | BuildOptions="-cl-mad-enable -DPHYSICS=%i -DSETTRACKPOINTS=%i " % (PhysicsList[Physics],InputCL['TrackPoints']) |
1336 | 211 | equemene | |
1337 | 211 | equemene | BlackHoleCL = cl.Program(ctx,BlobOpenCL).build(options = BuildOptions) |
1338 | 211 | equemene | |
1339 | 199 | equemene | # Je recupere les flag possibles pour les buffers
|
1340 | 199 | equemene | mf = cl.mem_flags |
1341 | 199 | equemene | |
1342 | 204 | equemene | TrajectoriesCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=Trajectories) |
1343 | 201 | equemene | zImageCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=zImage) |
1344 | 201 | equemene | fImageCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=fImage) |
1345 | 204 | equemene | IdLastCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=IdLast) |
1346 | 199 | equemene | |
1347 | 199 | equemene | start_time=time.time() |
1348 | 199 | equemene | |
1349 | 204 | equemene | if Method=='EachPixel': |
1350 | 204 | equemene | CLLaunch=BlackHoleCL.EachPixel(queue,(zImage.shape[0],zImage.shape[1]), |
1351 | 204 | equemene | None,zImageCL,fImageCL,
|
1352 | 204 | equemene | numpy.float32(Mass), |
1353 | 204 | equemene | numpy.float32(InternalRadius), |
1354 | 204 | equemene | numpy.float32(ExternalRadius), |
1355 | 204 | equemene | numpy.float32(Angle), |
1356 | 209 | equemene | numpy.int32(Line)) |
1357 | 204 | equemene | CLLaunch.wait() |
1358 | 224 | equemene | elif Method=='Original': |
1359 | 224 | equemene | CLLaunch=BlackHoleCL.Original(queue,(zImage.shape[0]/2,), |
1360 | 224 | equemene | None,zImageCL,fImageCL,
|
1361 | 224 | equemene | numpy.float32(Mass), |
1362 | 224 | equemene | numpy.float32(InternalRadius), |
1363 | 224 | equemene | numpy.float32(ExternalRadius), |
1364 | 224 | equemene | numpy.float32(Angle), |
1365 | 224 | equemene | numpy.int32(Line)) |
1366 | 224 | equemene | CLLaunch.wait() |
1367 | 204 | equemene | elif Method=='TrajectoCircle': |
1368 | 204 | equemene | CLLaunch=BlackHoleCL.Trajectory(queue,(Trajectories.shape[0],),
|
1369 | 204 | equemene | None,TrajectoriesCL,IdLastCL,
|
1370 | 204 | equemene | numpy.float32(Mass), |
1371 | 204 | equemene | numpy.float32(InternalRadius), |
1372 | 204 | equemene | numpy.float32(ExternalRadius), |
1373 | 204 | equemene | numpy.float32(Angle), |
1374 | 209 | equemene | numpy.int32(Line)) |
1375 | 204 | equemene | |
1376 | 204 | equemene | CLLaunch=BlackHoleCL.Circle(queue,(Trajectories.shape[0],
|
1377 | 204 | equemene | zImage.shape[0]*4),None, |
1378 | 204 | equemene | TrajectoriesCL,IdLastCL, |
1379 | 204 | equemene | zImageCL,fImageCL, |
1380 | 204 | equemene | numpy.float32(Mass), |
1381 | 204 | equemene | numpy.float32(InternalRadius), |
1382 | 204 | equemene | numpy.float32(ExternalRadius), |
1383 | 204 | equemene | numpy.float32(Angle), |
1384 | 209 | equemene | numpy.int32(Line)) |
1385 | 204 | equemene | CLLaunch.wait() |
1386 | 204 | equemene | else:
|
1387 | 204 | equemene | CLLaunch=BlackHoleCL.Trajectory(queue,(Trajectories.shape[0],),
|
1388 | 204 | equemene | None,TrajectoriesCL,IdLastCL,
|
1389 | 204 | equemene | numpy.float32(Mass), |
1390 | 204 | equemene | numpy.float32(InternalRadius), |
1391 | 204 | equemene | numpy.float32(ExternalRadius), |
1392 | 204 | equemene | numpy.float32(Angle), |
1393 | 209 | equemene | numpy.int32(Line)) |
1394 | 204 | equemene | |
1395 | 204 | equemene | CLLaunch=BlackHoleCL.Pixel(queue,(zImage.shape[0],
|
1396 | 217 | equemene | zImage.shape[1]),None, |
1397 | 204 | equemene | zImageCL,fImageCL,TrajectoriesCL,IdLastCL, |
1398 | 204 | equemene | numpy.uint32(Trajectories.shape[0]),
|
1399 | 204 | equemene | numpy.float32(Mass), |
1400 | 204 | equemene | numpy.float32(InternalRadius), |
1401 | 204 | equemene | numpy.float32(ExternalRadius), |
1402 | 204 | equemene | numpy.float32(Angle), |
1403 | 209 | equemene | numpy.int32(Line)) |
1404 | 204 | equemene | CLLaunch.wait() |
1405 | 204 | equemene | |
1406 | 218 | equemene | compute = time.time()-start_time |
1407 | 199 | equemene | |
1408 | 201 | equemene | cl.enqueue_copy(queue,zImage,zImageCL).wait() |
1409 | 201 | equemene | cl.enqueue_copy(queue,fImage,fImageCL).wait() |
1410 | 204 | equemene | cl.enqueue_copy(queue,Trajectories,TrajectoriesCL).wait() |
1411 | 204 | equemene | cl.enqueue_copy(queue,IdLast,IdLastCL).wait() |
1412 | 218 | equemene | elapsed = time.time()-start_time |
1413 | 218 | equemene | print("\nCompute Time : %f" % compute)
|
1414 | 218 | equemene | print("Elapsed Time : %f\n" % elapsed)
|
1415 | 211 | equemene | |
1416 | 211 | equemene | zMaxPosition=numpy.where(zImage[:,:]==zImage.max()) |
1417 | 211 | equemene | fMaxPosition=numpy.where(fImage[:,:]==fImage.max()) |
1418 | 219 | equemene | print("Z max @(%i,%i) : %f" % (zMaxPosition[1][0],zMaxPosition[0][0],zImage.max())) |
1419 | 219 | equemene | print("Flux max @(%i,%i) : %f\n" % (fMaxPosition[1][0],fMaxPosition[0][0],fImage.max())) |
1420 | 201 | equemene | zImageCL.release() |
1421 | 201 | equemene | fImageCL.release() |
1422 | 204 | equemene | |
1423 | 204 | equemene | TrajectoriesCL.release() |
1424 | 204 | equemene | IdLastCL.release() |
1425 | 204 | equemene | |
1426 | 199 | equemene | return(elapsed)
|
1427 | 199 | equemene | |
1428 | 217 | equemene | def BlackHoleCUDA(zImage,fImage,InputCL): |
1429 | 217 | equemene | |
1430 | 217 | equemene | kernel_params = {} |
1431 | 217 | equemene | |
1432 | 217 | equemene | print(InputCL) |
1433 | 217 | equemene | |
1434 | 217 | equemene | Device=InputCL['Device']
|
1435 | 217 | equemene | GpuStyle=InputCL['GpuStyle']
|
1436 | 217 | equemene | VariableType=InputCL['VariableType']
|
1437 | 217 | equemene | Size=InputCL['Size']
|
1438 | 217 | equemene | Mass=InputCL['Mass']
|
1439 | 217 | equemene | InternalRadius=InputCL['InternalRadius']
|
1440 | 217 | equemene | ExternalRadius=InputCL['ExternalRadius']
|
1441 | 217 | equemene | Angle=InputCL['Angle']
|
1442 | 217 | equemene | Method=InputCL['Method']
|
1443 | 217 | equemene | TrackPoints=InputCL['TrackPoints']
|
1444 | 217 | equemene | Physics=InputCL['Physics']
|
1445 | 217 | equemene | |
1446 | 217 | equemene | PhysicsList=DictionariesAPI() |
1447 | 217 | equemene | |
1448 | 217 | equemene | if InputCL['BlackBody']: |
1449 | 217 | equemene | # Spectrum is Black Body one
|
1450 | 217 | equemene | Line=0
|
1451 | 217 | equemene | else:
|
1452 | 217 | equemene | # Spectrum is Monochromatic Line one
|
1453 | 217 | equemene | Line=1
|
1454 | 217 | equemene | |
1455 | 217 | equemene | Trajectories=numpy.zeros((int(InputCL['Size']/2),InputCL['TrackPoints']),dtype=numpy.float32) |
1456 | 217 | equemene | IdLast=numpy.zeros(int(InputCL['Size']/2),dtype=numpy.int32) |
1457 | 217 | equemene | |
1458 | 217 | equemene | try:
|
1459 | 217 | equemene | # For PyCUDA import
|
1460 | 217 | equemene | import pycuda.driver as cuda |
1461 | 217 | equemene | from pycuda.compiler import SourceModule |
1462 | 217 | equemene | |
1463 | 217 | equemene | cuda.init() |
1464 | 217 | equemene | for Id in range(cuda.Device.count()): |
1465 | 217 | equemene | if Id==Device:
|
1466 | 217 | equemene | XPU=cuda.Device(Id) |
1467 | 217 | equemene | print("GPU selected %s" % XPU.name())
|
1468 | 217 | equemene | print
|
1469 | 217 | equemene | |
1470 | 217 | equemene | except ImportError: |
1471 | 217 | equemene | print("Platform does not seem to support CUDA")
|
1472 | 217 | equemene | |
1473 | 217 | equemene | Context=XPU.make_context() |
1474 | 217 | equemene | |
1475 | 217 | equemene | try:
|
1476 | 224 | equemene | mod = SourceModule(KernelCodeCuda(),options=['--compiler-options','-DPHYSICS=%i -DSETTRACKPOINTS=%i' % (PhysicsList[Physics],TrackPoints)]) |
1477 | 217 | equemene | print("Compilation seems to be OK")
|
1478 | 217 | equemene | except:
|
1479 | 217 | equemene | print("Compilation seems to break")
|
1480 | 217 | equemene | |
1481 | 217 | equemene | EachPixelCU=mod.get_function("EachPixel")
|
1482 | 224 | equemene | OriginalCU=mod.get_function("Original")
|
1483 | 217 | equemene | TrajectoryCU=mod.get_function("Trajectory")
|
1484 | 217 | equemene | PixelCU=mod.get_function("Pixel")
|
1485 | 217 | equemene | CircleCU=mod.get_function("Circle")
|
1486 | 217 | equemene | |
1487 | 217 | equemene | TrajectoriesCU = cuda.mem_alloc(Trajectories.size*Trajectories.dtype.itemsize) |
1488 | 217 | equemene | cuda.memcpy_htod(TrajectoriesCU, Trajectories) |
1489 | 217 | equemene | zImageCU = cuda.mem_alloc(zImage.size*zImage.dtype.itemsize) |
1490 | 217 | equemene | cuda.memcpy_htod(zImageCU, zImage) |
1491 | 217 | equemene | fImageCU = cuda.mem_alloc(fImage.size*fImage.dtype.itemsize) |
1492 | 217 | equemene | cuda.memcpy_htod(zImageCU, fImage) |
1493 | 217 | equemene | IdLastCU = cuda.mem_alloc(IdLast.size*IdLast.dtype.itemsize) |
1494 | 217 | equemene | cuda.memcpy_htod(IdLastCU, IdLast) |
1495 | 217 | equemene | |
1496 | 217 | equemene | start_time=time.time() |
1497 | 217 | equemene | |
1498 | 217 | equemene | if Method=='EachPixel': |
1499 | 217 | equemene | EachPixelCU(zImageCU,fImageCU, |
1500 | 217 | equemene | numpy.float32(Mass), |
1501 | 217 | equemene | numpy.float32(InternalRadius), |
1502 | 217 | equemene | numpy.float32(ExternalRadius), |
1503 | 217 | equemene | numpy.float32(Angle), |
1504 | 217 | equemene | numpy.int32(Line), |
1505 | 219 | equemene | grid=(zImage.shape[0]/32,zImage.shape[1]/32), |
1506 | 219 | equemene | block=(32,32,1)) |
1507 | 224 | equemene | elif Method=='Original': |
1508 | 224 | equemene | OriginalCU(zImageCU,fImageCU, |
1509 | 224 | equemene | numpy.float32(Mass), |
1510 | 224 | equemene | numpy.float32(InternalRadius), |
1511 | 224 | equemene | numpy.float32(ExternalRadius), |
1512 | 224 | equemene | numpy.float32(Angle), |
1513 | 224 | equemene | numpy.int32(Line), |
1514 | 224 | equemene | grid=(zImage.shape[0]/32/2,1), |
1515 | 224 | equemene | block=(32,1,1)) |
1516 | 217 | equemene | elif Method=='TrajectoCircle': |
1517 | 217 | equemene | TrajectoryCU(TrajectoriesCU,IdLastCU, |
1518 | 217 | equemene | numpy.float32(Mass), |
1519 | 217 | equemene | numpy.float32(InternalRadius), |
1520 | 217 | equemene | numpy.float32(ExternalRadius), |
1521 | 217 | equemene | numpy.float32(Angle), |
1522 | 217 | equemene | numpy.int32(Line), |
1523 | 219 | equemene | grid=(Trajectories.shape[0]/32,1), |
1524 | 219 | equemene | block=(32,1,1)) |
1525 | 217 | equemene | |
1526 | 217 | equemene | CircleCU(TrajectoriesCU,IdLastCU,zImageCU,fImageCU, |
1527 | 217 | equemene | numpy.float32(Mass), |
1528 | 217 | equemene | numpy.float32(InternalRadius), |
1529 | 217 | equemene | numpy.float32(ExternalRadius), |
1530 | 217 | equemene | numpy.float32(Angle), |
1531 | 217 | equemene | numpy.int32(Line), |
1532 | 219 | equemene | grid=(Trajectories.shape[0]/32,zImage.shape[0]*4/32), |
1533 | 219 | equemene | block=(32,32,1)) |
1534 | 217 | equemene | else:
|
1535 | 217 | equemene | TrajectoryCU(TrajectoriesCU,IdLastCU, |
1536 | 217 | equemene | numpy.float32(Mass), |
1537 | 217 | equemene | numpy.float32(InternalRadius), |
1538 | 217 | equemene | numpy.float32(ExternalRadius), |
1539 | 217 | equemene | numpy.float32(Angle), |
1540 | 217 | equemene | numpy.int32(Line), |
1541 | 219 | equemene | grid=(Trajectories.shape[0]/32,1), |
1542 | 219 | equemene | block=(32,1,1)) |
1543 | 217 | equemene | |
1544 | 217 | equemene | PixelCU(zImageCU,fImageCU,TrajectoriesCU,IdLastCU, |
1545 | 217 | equemene | numpy.uint32(Trajectories.shape[0]),
|
1546 | 217 | equemene | numpy.float32(Mass), |
1547 | 217 | equemene | numpy.float32(InternalRadius), |
1548 | 217 | equemene | numpy.float32(ExternalRadius), |
1549 | 217 | equemene | numpy.float32(Angle), |
1550 | 217 | equemene | numpy.int32(Line), |
1551 | 219 | equemene | grid=(zImage.shape[0]/32,zImage.shape[1]/32,1), |
1552 | 219 | equemene | block=(32,32,1)) |
1553 | 217 | equemene | |
1554 | 220 | equemene | Context.synchronize() |
1555 | 220 | equemene | |
1556 | 218 | equemene | compute = time.time()-start_time |
1557 | 217 | equemene | |
1558 | 217 | equemene | cuda.memcpy_dtoh(zImage,zImageCU) |
1559 | 217 | equemene | cuda.memcpy_dtoh(fImage,fImageCU) |
1560 | 218 | equemene | elapsed = time.time()-start_time |
1561 | 218 | equemene | print("\nCompute Time : %f" % compute)
|
1562 | 218 | equemene | print("Elapsed Time : %f\n" % elapsed)
|
1563 | 217 | equemene | |
1564 | 217 | equemene | zMaxPosition=numpy.where(zImage[:,:]==zImage.max()) |
1565 | 217 | equemene | fMaxPosition=numpy.where(fImage[:,:]==fImage.max()) |
1566 | 219 | equemene | print("Z max @(%i,%i) : %f" % (zMaxPosition[1][0],zMaxPosition[0][0],zImage.max())) |
1567 | 219 | equemene | print("Flux max @(%i,%i) : %f\n" % (fMaxPosition[1][0],fMaxPosition[0][0],fImage.max())) |
1568 | 217 | equemene | |
1569 | 220 | equemene | |
1570 | 218 | equemene | Context.pop() |
1571 | 220 | equemene | |
1572 | 217 | equemene | Context.detach() |
1573 | 217 | equemene | |
1574 | 217 | equemene | return(elapsed)
|
1575 | 217 | equemene | |
1576 | 199 | equemene | if __name__=='__main__': |
1577 | 199 | equemene | |
1578 | 199 | equemene | GpuStyle = 'OpenCL'
|
1579 | 199 | equemene | Mass = 1.
|
1580 | 199 | equemene | # Internal Radius 3 times de Schwarzschild Radius
|
1581 | 199 | equemene | InternalRadius=6.*Mass
|
1582 | 199 | equemene | #
|
1583 | 199 | equemene | ExternalRadius=12.
|
1584 | 199 | equemene | #
|
1585 | 199 | equemene | # Angle with normal to disc 10 degrees
|
1586 | 199 | equemene | Angle = numpy.pi/180.*(90.-10.) |
1587 | 199 | equemene | # Radiation of disc : BlackBody or Monochromatic
|
1588 | 209 | equemene | BlackBody = False
|
1589 | 199 | equemene | # Size of image
|
1590 | 199 | equemene | Size=256
|
1591 | 199 | equemene | # Variable Type
|
1592 | 199 | equemene | VariableType='FP32'
|
1593 | 199 | equemene | # ?
|
1594 | 199 | equemene | q=-2
|
1595 | 204 | equemene | # Method of resolution
|
1596 | 209 | equemene | Method='TrajectoPixel'
|
1597 | 211 | equemene | # Colors for output image
|
1598 | 211 | equemene | Colors='Greyscale'
|
1599 | 211 | equemene | # Physics
|
1600 | 211 | equemene | Physics='Einstein'
|
1601 | 211 | equemene | # No output as image
|
1602 | 211 | equemene | NoImage = False
|
1603 | 211 | equemene | |
1604 | 224 | equemene | HowToUse='%s -h [Help] -b [BlackBodyEmission] -n [NoImage] -p <Einstein/Newton> -s <SizeInPixels> -m <Mass> -i <DiscInternalRadius> -x <DiscExternalRadius> -a <AngleAboveDisc> -d <DeviceId> -c <Greyscale/Red2Yellow> -g <CUDA/OpenCL> -t <EachPixel/TrajectoCircle/TrajectoPixel/Original> -v <FP32/FP64>'
|
1605 | 199 | equemene | |
1606 | 199 | equemene | try:
|
1607 | 211 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hbns:m:i:x:a:d:g:v:t:c:p:",["blackbody","noimage","camera","size=","mass=","internal=","external=","angle=","device=","gpustyle=","variabletype=","method=","colors=","physics="]) |
1608 | 199 | equemene | except getopt.GetoptError:
|
1609 | 199 | equemene | print(HowToUse % sys.argv[0])
|
1610 | 199 | equemene | sys.exit(2)
|
1611 | 199 | equemene | |
1612 | 199 | equemene | # List of Devices
|
1613 | 199 | equemene | Devices=[] |
1614 | 199 | equemene | Alu={} |
1615 | 199 | equemene | |
1616 | 199 | equemene | for opt, arg in opts: |
1617 | 199 | equemene | if opt == '-h': |
1618 | 199 | equemene | print(HowToUse % sys.argv[0])
|
1619 | 199 | equemene | |
1620 | 199 | equemene | print("\nInformations about devices detected under OpenCL API:")
|
1621 | 199 | equemene | # For PyOpenCL import
|
1622 | 199 | equemene | try:
|
1623 | 199 | equemene | import pyopencl as cl |
1624 | 199 | equemene | Id=0
|
1625 | 199 | equemene | for platform in cl.get_platforms(): |
1626 | 199 | equemene | for device in platform.get_devices(): |
1627 | 199 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
1628 | 199 | equemene | deviceType="xPU"
|
1629 | 199 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
1630 | 199 | equemene | Id=Id+1
|
1631 | 199 | equemene | |
1632 | 199 | equemene | except:
|
1633 | 199 | equemene | print("Your platform does not seem to support OpenCL")
|
1634 | 199 | equemene | |
1635 | 199 | equemene | print("\nInformations about devices detected under CUDA API:")
|
1636 | 199 | equemene | # For PyCUDA import
|
1637 | 199 | equemene | try:
|
1638 | 199 | equemene | import pycuda.driver as cuda |
1639 | 199 | equemene | cuda.init() |
1640 | 199 | equemene | for Id in range(cuda.Device.count()): |
1641 | 199 | equemene | device=cuda.Device(Id) |
1642 | 199 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
1643 | 199 | equemene | print
|
1644 | 199 | equemene | except:
|
1645 | 199 | equemene | print("Your platform does not seem to support CUDA")
|
1646 | 199 | equemene | |
1647 | 199 | equemene | sys.exit() |
1648 | 199 | equemene | |
1649 | 199 | equemene | elif opt in ("-d", "--device"): |
1650 | 199 | equemene | # Devices.append(int(arg))
|
1651 | 199 | equemene | Device=int(arg)
|
1652 | 199 | equemene | elif opt in ("-g", "--gpustyle"): |
1653 | 199 | equemene | GpuStyle = arg |
1654 | 204 | equemene | elif opt in ("-v", "--variabletype"): |
1655 | 199 | equemene | VariableType = arg |
1656 | 199 | equemene | elif opt in ("-s", "--size"): |
1657 | 199 | equemene | Size = int(arg)
|
1658 | 199 | equemene | elif opt in ("-m", "--mass"): |
1659 | 199 | equemene | Mass = float(arg)
|
1660 | 199 | equemene | elif opt in ("-i", "--internal"): |
1661 | 199 | equemene | InternalRadius = float(arg)
|
1662 | 199 | equemene | elif opt in ("-e", "--external"): |
1663 | 199 | equemene | ExternalRadius = float(arg)
|
1664 | 199 | equemene | elif opt in ("-a", "--angle"): |
1665 | 199 | equemene | Angle = numpy.pi/180.*(90.-float(arg)) |
1666 | 199 | equemene | elif opt in ("-b", "--blackbody"): |
1667 | 199 | equemene | BlackBody = True
|
1668 | 211 | equemene | elif opt in ("-n", "--noimage"): |
1669 | 211 | equemene | NoImage = True
|
1670 | 204 | equemene | elif opt in ("-t", "--method"): |
1671 | 204 | equemene | Method = arg |
1672 | 211 | equemene | elif opt in ("-c", "--colors"): |
1673 | 211 | equemene | Colors = arg |
1674 | 211 | equemene | elif opt in ("-p", "--physics"): |
1675 | 211 | equemene | Physics = arg |
1676 | 199 | equemene | |
1677 | 199 | equemene | print("Device Identification selected : %s" % Device)
|
1678 | 199 | equemene | print("GpuStyle used : %s" % GpuStyle)
|
1679 | 199 | equemene | print("VariableType : %s" % VariableType)
|
1680 | 199 | equemene | print("Size : %i" % Size)
|
1681 | 199 | equemene | print("Mass : %f" % Mass)
|
1682 | 199 | equemene | print("Internal Radius : %f" % InternalRadius)
|
1683 | 199 | equemene | print("External Radius : %f" % ExternalRadius)
|
1684 | 199 | equemene | print("Angle with normal of (in radians) : %f" % Angle)
|
1685 | 199 | equemene | print("Black Body Disc Emission (monochromatic instead) : %s" % BlackBody)
|
1686 | 204 | equemene | print("Method of resolution : %s" % Method)
|
1687 | 211 | equemene | print("Colors for output images : %s" % Colors)
|
1688 | 211 | equemene | print("Physics used for Trajectories : %s" % Physics)
|
1689 | 199 | equemene | |
1690 | 199 | equemene | if GpuStyle=='CUDA': |
1691 | 199 | equemene | print("\nSelection of CUDA device")
|
1692 | 199 | equemene | try:
|
1693 | 199 | equemene | # For PyCUDA import
|
1694 | 199 | equemene | import pycuda.driver as cuda |
1695 | 199 | equemene | |
1696 | 199 | equemene | cuda.init() |
1697 | 199 | equemene | for Id in range(cuda.Device.count()): |
1698 | 199 | equemene | device=cuda.Device(Id) |
1699 | 199 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
1700 | 199 | equemene | if Id in Devices: |
1701 | 199 | equemene | Alu[Id]='GPU'
|
1702 | 199 | equemene | |
1703 | 199 | equemene | except ImportError: |
1704 | 199 | equemene | print("Platform does not seem to support CUDA")
|
1705 | 199 | equemene | |
1706 | 199 | equemene | if GpuStyle=='OpenCL': |
1707 | 199 | equemene | print("\nSelection of OpenCL device")
|
1708 | 199 | equemene | try:
|
1709 | 199 | equemene | # For PyOpenCL import
|
1710 | 199 | equemene | import pyopencl as cl |
1711 | 199 | equemene | Id=0
|
1712 | 199 | equemene | for platform in cl.get_platforms(): |
1713 | 199 | equemene | for device in platform.get_devices(): |
1714 | 199 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
1715 | 199 | equemene | deviceType="xPU"
|
1716 | 199 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
|
1717 | 199 | equemene | |
1718 | 199 | equemene | if Id in Devices: |
1719 | 199 | equemene | # Set the Alu as detected Device Type
|
1720 | 199 | equemene | Alu[Id]=deviceType |
1721 | 199 | equemene | Id=Id+1
|
1722 | 199 | equemene | except ImportError: |
1723 | 199 | equemene | print("Platform does not seem to support OpenCL")
|
1724 | 199 | equemene | |
1725 | 199 | equemene | # print(Devices,Alu)
|
1726 | 199 | equemene | |
1727 | 199 | equemene | # MyImage=numpy.where(numpy.random.zeros(Size,Size)>0,1,-1).astype(numpy.float32)
|
1728 | 204 | equemene | TrackPoints=2048
|
1729 | 201 | equemene | zImage=numpy.zeros((Size,Size),dtype=numpy.float32) |
1730 | 201 | equemene | fImage=numpy.zeros((Size,Size),dtype=numpy.float32) |
1731 | 199 | equemene | |
1732 | 204 | equemene | InputCL={} |
1733 | 204 | equemene | InputCL['Device']=Device
|
1734 | 204 | equemene | InputCL['GpuStyle']=GpuStyle
|
1735 | 204 | equemene | InputCL['VariableType']=VariableType
|
1736 | 204 | equemene | InputCL['Size']=Size
|
1737 | 204 | equemene | InputCL['Mass']=Mass
|
1738 | 204 | equemene | InputCL['InternalRadius']=InternalRadius
|
1739 | 204 | equemene | InputCL['ExternalRadius']=ExternalRadius
|
1740 | 204 | equemene | InputCL['Angle']=Angle
|
1741 | 204 | equemene | InputCL['BlackBody']=BlackBody
|
1742 | 204 | equemene | InputCL['Method']=Method
|
1743 | 204 | equemene | InputCL['TrackPoints']=TrackPoints
|
1744 | 211 | equemene | InputCL['Physics']=Physics
|
1745 | 199 | equemene | |
1746 | 217 | equemene | if GpuStyle=='OpenCL': |
1747 | 217 | equemene | duration=BlackHoleCL(zImage,fImage,InputCL) |
1748 | 217 | equemene | else:
|
1749 | 217 | equemene | duration=BlackHoleCUDA(zImage,fImage,InputCL) |
1750 | 217 | equemene | |
1751 | 211 | equemene | Hostname=gethostname() |
1752 | 211 | equemene | Date=time.strftime("%Y%m%d_%H%M%S")
|
1753 | 211 | equemene | ImageInfo="%s_Device%i_%s_%s" % (Method,Device,Hostname,Date)
|
1754 | 211 | equemene | |
1755 | 211 | equemene | |
1756 | 211 | equemene | if not NoImage: |
1757 | 211 | equemene | ImageOutput(zImage,"TrouNoirZ_%s" % ImageInfo,Colors)
|
1758 | 211 | equemene | ImageOutput(fImage,"TrouNoirF_%s" % ImageInfo,Colors) |