Révision 214 TrouNoir/trou_noir.c
trou_noir.c (revision 214) | ||
---|---|---|
6 | 6 |
par Herve Aussel et Emmanuel Quemener |
7 | 7 |
|
8 | 8 |
Conversion en C par Emmanuel Quemener en aout 1997 |
9 |
Modification par Emmanuel Quemener en aout 2019 |
|
9 | 10 |
|
10 | 11 |
Remerciements a : |
11 | 12 |
|
... | ... | |
15 | 16 |
- Le Numerical Recipies pour ses recettes de calcul |
16 | 17 |
- Luc Blanchet pour sa disponibilite lors de mes interrogations en RG |
17 | 18 |
|
18 |
Mes Coordonnees : Emmanuel Quemener |
|
19 |
Departement Optique |
|
20 |
ENST de Bretagne |
|
21 |
BP 832 |
|
22 |
29285 BREST Cedex |
|
23 |
|
|
24 |
Emmanuel.Quemener@enst-bretagne.fr |
|
25 |
|
|
26 | 19 |
Compilation sous gcc ( Compilateur GNU sous Linux ) : |
27 | 20 |
|
28 |
gcc -O6 -m486 -o trou_noir trou_noir.c -lm
|
|
21 |
gcc -O2 -o trou_noir trou_noir.c -lm
|
|
29 | 22 |
*/ |
30 | 23 |
|
31 | 24 |
#include <stdio.h> |
32 | 25 |
#include <math.h> |
33 | 26 |
#include <stdlib.h> |
34 | 27 |
#include <string.h> |
28 |
#include <sys/time.h> |
|
35 | 29 |
|
36 |
#define nbr 200 /* Nombre de colonnes du spectre */
|
|
30 |
#define nbr 256 /* Nombre de colonnes du spectre */
|
|
37 | 31 |
|
38 | 32 |
#define PI 3.14159265359 |
39 | 33 |
|
40 |
double atanp(double x,double y) |
|
34 |
#define TRACKPOINTS 2048 |
|
35 |
|
|
36 |
#if TYPE == FP32 |
|
37 |
#define MYFLOAT float |
|
38 |
#else |
|
39 |
#define MYFLOAT double |
|
40 |
#endif |
|
41 |
|
|
42 |
MYFLOAT atanp(MYFLOAT x,MYFLOAT y) |
|
41 | 43 |
{ |
42 |
double angle;
|
|
44 |
MYFLOAT angle;
|
|
43 | 45 |
|
44 | 46 |
angle=atan2(y,x); |
45 | 47 |
|
... | ... | |
52 | 54 |
} |
53 | 55 |
|
54 | 56 |
|
55 |
double f(double v)
|
|
57 |
MYFLOAT f(MYFLOAT v)
|
|
56 | 58 |
{ |
57 | 59 |
return v; |
58 | 60 |
} |
59 | 61 |
|
60 |
double g(double u,double m,double b)
|
|
62 |
MYFLOAT g(MYFLOAT u,MYFLOAT m,MYFLOAT b)
|
|
61 | 63 |
{ |
62 |
// return (3.*m/b*pow(u,2)-u); |
|
63 | 64 |
return (3.*m/b*pow(u,2)-u); |
64 | 65 |
} |
65 | 66 |
|
66 | 67 |
|
67 |
void calcul(double *us,double *vs,double up,double vp,
|
|
68 |
double h,double m,double b)
|
|
68 |
void calcul(MYFLOAT *us,MYFLOAT *vs,MYFLOAT up,MYFLOAT vp,
|
|
69 |
MYFLOAT h,MYFLOAT m,MYFLOAT b)
|
|
69 | 70 |
{ |
70 |
double c[4],d[4];
|
|
71 |
MYFLOAT c[4],d[4];
|
|
71 | 72 |
|
72 | 73 |
c[0]=h*f(vp); |
73 | 74 |
c[1]=h*f(vp+c[0]/2.); |
... | ... | |
82 | 83 |
*vs=vp+(d[0]+2.*d[1]+2.*d[2]+d[3])/6.; |
83 | 84 |
} |
84 | 85 |
|
85 |
void rungekutta(double *ps,double *us,double *vs,
|
|
86 |
double pp,double up,double vp,
|
|
87 |
double h,double m,double b)
|
|
86 |
void rungekutta(MYFLOAT *ps,MYFLOAT *us,MYFLOAT *vs,
|
|
87 |
MYFLOAT pp,MYFLOAT up,MYFLOAT vp,
|
|
88 |
MYFLOAT h,MYFLOAT m,MYFLOAT b)
|
|
88 | 89 |
{ |
89 | 90 |
calcul(us,vs,up,vp,h,m,b); |
90 | 91 |
*ps=pp+h; |
91 | 92 |
} |
92 | 93 |
|
93 | 94 |
|
94 |
double decalage_spectral(double r,double b,double phi,
|
|
95 |
double tho,double m)
|
|
95 |
MYFLOAT decalage_spectral(MYFLOAT r,MYFLOAT b,MYFLOAT phi,
|
|
96 |
MYFLOAT tho,MYFLOAT m)
|
|
96 | 97 |
{ |
97 | 98 |
return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi))); |
98 | 99 |
} |
99 | 100 |
|
100 |
void spectre(int nt[nbr],double fx[nbr],double rf,int q,double b,double db,
|
|
101 |
double h,double r,double m,double bss,double *flx)
|
|
101 |
MYFLOAT spectre(MYFLOAT rf,MYFLOAT q,MYFLOAT b,MYFLOAT db,
|
|
102 |
MYFLOAT h,MYFLOAT r,MYFLOAT m,MYFLOAT bss)
|
|
102 | 103 |
{ |
103 |
int fi;
|
|
104 |
MYFLOAT flx;
|
|
104 | 105 |
|
105 |
fi=(int)(rf*nbr/bss); |
|
106 |
nt[fi]+=1; |
|
107 |
*flx=pow(r/m,q)*pow(rf,4)*b*db*h; |
|
108 |
fx[fi]=fx[fi]+*flx; |
|
106 |
flx=exp(q*log(r/m))*pow(rf,4)*b*db*h; |
|
107 |
return(flx); |
|
109 | 108 |
} |
110 | 109 |
|
111 |
void spectre_cn(int nt[nbr],double fx[nbr],double rf,double b,double db,
|
|
112 |
double h,double r,double m,double bss,double *flx)
|
|
110 |
MYFLOAT spectre_cn(MYFLOAT rf,MYFLOAT b,MYFLOAT db,
|
|
111 |
MYFLOAT h,MYFLOAT r,MYFLOAT m,MYFLOAT bss)
|
|
113 | 112 |
{ |
114 |
double nu_rec,nu_em,qu,v,temp,temp_em,flux_int,m_point,planck,c,k; |
|
113 |
|
|
114 |
MYFLOAT flx; |
|
115 |
MYFLOAT nu_rec,nu_em,qu,temp_em,flux_int; |
|
115 | 116 |
int fi,posfreq; |
116 | 117 |
|
117 |
planck=6.62e-34;
|
|
118 |
k=1.38e-23;
|
|
119 |
temp=3.e7;
|
|
120 |
m_point=1.e14;
|
|
121 |
v=1.-3./r;
|
|
118 |
#define planck 6.62e-34
|
|
119 |
#define k 1.38e-23
|
|
120 |
#define c2 9.e16
|
|
121 |
#define temp 3.e7
|
|
122 |
#define m_point 1.
|
|
122 | 123 |
|
123 |
qu=1/sqrt(1-3./r)/sqrt(r)*(sqrt(r)-sqrt(6)+sqrt(3)/2*log((sqrt(r)+sqrt(3))/(sqrt(r)-sqrt(3))*(sqrt(6)-sqrt(3))/(sqrt(6)+sqrt(3)))); |
|
124 |
#define lplanck (log(6.62)-34.*log(10.)) |
|
125 |
#define lk (log(1.38)-23.*log(10.)) |
|
126 |
#define lc2 (log(9.)+16.*log(10.)) |
|
127 |
|
|
128 |
MYFLOAT v=1.-3./r; |
|
124 | 129 |
|
125 |
temp_em=temp*sqrt(m)*exp(0.25*log(m_point))*exp(-0.75*log(r))* |
|
126 |
exp(-0.125*log(v))*exp(0.25*log(qu)); |
|
130 |
qu=1./sqrt((1.-3./r)*r)*(sqrt(r)-sqrt(6.)+sqrt(3.)/2.*log((sqrt(r)+sqrt(3.))/(sqrt(r)-sqrt(3.))* 0.17157287525380988 )); |
|
127 | 131 |
|
128 |
flux_int=0; |
|
129 |
*flx=0; |
|
132 |
temp_em=temp*sqrt(m)*exp(0.25*log(m_point)-0.75*log(r)-0.125*log(v)+0.25*log(fabs(qu))); |
|
130 | 133 |
|
131 |
for (fi=1;fi<nbr;fi++) |
|
134 |
flux_int=0.; |
|
135 |
flx=0.; |
|
136 |
|
|
137 |
for (fi=0;fi<nbr;fi++) |
|
132 | 138 |
{ |
133 |
nu_em=bss*fi/nbr;
|
|
134 |
nu_rec=nu_em*rf;
|
|
135 |
posfreq=1./bss*nu_rec*nbr;
|
|
139 |
nu_em=bss*(MYFLOAT)fi/(MYFLOAT)nbr;
|
|
140 |
nu_rec=nu_em*rf; |
|
141 |
posfreq=(int)(nu_rec*(MYFLOAT)nbr/bss);
|
|
136 | 142 |
if ((posfreq>0)&&(posfreq<nbr)) |
137 |
{ |
|
138 |
flux_int=2*planck/9e16*pow(nu_em,3)/(exp(planck*nu_em/k/temp_em)-1.)*pow(rf,3)*b*db*h; |
|
139 |
fx[posfreq]+=flux_int; |
|
140 |
*flx+=flux_int; |
|
141 |
nt[posfreq]+=1; |
|
142 |
} |
|
143 |
{ |
|
144 |
flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.)*exp(3.*log(rf))*b*db*h; |
|
145 |
flx+=flux_int; |
|
146 |
} |
|
143 | 147 |
} |
148 |
|
|
149 |
return((MYFLOAT)flx); |
|
144 | 150 |
} |
145 | 151 |
|
146 |
void impact(double d,double phi,int dim,double r,double b,double tho,double m,
|
|
147 |
double **zp,double **fp,
|
|
148 |
int nt[200],double fx[200],int q,double db,
|
|
149 |
double h,double bss,int raie)
|
|
152 |
void impact(MYFLOAT d,MYFLOAT phi,int dim,MYFLOAT r,MYFLOAT b,MYFLOAT tho,MYFLOAT m,
|
|
153 |
MYFLOAT **zp,MYFLOAT **fp,
|
|
154 |
MYFLOAT q,MYFLOAT db,
|
|
155 |
MYFLOAT h,MYFLOAT bss,int raie)
|
|
150 | 156 |
{ |
151 |
double xe,ye;
|
|
157 |
MYFLOAT xe,ye;
|
|
152 | 158 |
int xi,yi; |
153 |
double flx,rf;
|
|
159 |
MYFLOAT flx,rf;
|
|
154 | 160 |
xe=d*sin(phi); |
155 | 161 |
ye=-d*cos(phi); |
156 | 162 |
|
... | ... | |
161 | 167 |
|
162 | 168 |
if (raie==0) |
163 | 169 |
{ |
164 |
spectre(nt,fx,rf,q,b,db,h,r,m,bss,&flx); |
|
170 |
bss=1.e19; |
|
171 |
flx=spectre_cn(rf,b,db,h,r,m,bss); |
|
165 | 172 |
} |
166 | 173 |
else |
167 | 174 |
{ |
168 |
spectre_cn(nt,fx,rf,b,db,h,r,m,bss,&flx); |
|
175 |
bss=2.; |
|
176 |
flx=spectre(rf,q,b,db,h,r,m,bss); |
|
169 | 177 |
} |
170 | 178 |
|
171 | 179 |
if (zp[xi][yi]==0.) |
... | ... | |
177 | 185 |
{ |
178 | 186 |
fp[xi][yi]=flx; |
179 | 187 |
} |
188 |
|
|
180 | 189 |
} |
181 | 190 |
|
182 | 191 |
void sauvegarde_pgm(char nom[24],unsigned int **image,int dim) |
... | ... | |
198 | 207 |
fclose(sortie); |
199 | 208 |
} |
200 | 209 |
|
201 |
void sauvegarde_dat(char nom[24],double tableau[3][nbr],int raie) |
|
202 |
{ |
|
203 |
FILE *sortie; |
|
204 |
unsigned long i; |
|
205 |
|
|
206 |
sortie=fopen(nom,"w"); |
|
207 |
|
|
208 |
fprintf(sortie,"# Trou Noir entoure d'un Disque d'Accretion\n"); |
|
209 |
|
|
210 |
if (raie==0) |
|
211 |
{ |
|
212 |
fprintf(sortie,"# Colonne 1 : Frequence_Recue/Frequence_Emise\n"); |
|
213 |
} |
|
214 |
else |
|
215 |
{ |
|
216 |
fprintf(sortie,"# Colonne 1 : Fr?quence d'Emission en Hertz\n"); |
|
217 |
} |
|
218 |
|
|
219 |
fprintf(sortie,"# Colonne 2 : Intensite Normalisee\n"); |
|
220 |
fprintf(sortie,"# Colonne 3 : Nombre d'Impacts Normalise\n"); |
|
221 |
|
|
222 |
for (i=1;i<nbr;i++) |
|
223 |
{ |
|
224 |
fprintf(sortie,"%f\t%f\t%f\n",tableau[0][i],tableau[1][i],tableau[2][i]); |
|
225 |
} |
|
226 |
|
|
227 |
fclose(sortie); |
|
228 |
} |
|
229 |
|
|
230 | 210 |
int main(int argc,char *argv[]) |
231 | 211 |
{ |
232 | 212 |
|
233 |
double m,rs,ri,re,tho,ro;
|
|
213 |
MYFLOAT m,rs,ri,re,tho;
|
|
234 | 214 |
int q; |
235 | 215 |
|
236 |
double bss,stp;
|
|
216 |
MYFLOAT bss,stp;
|
|
237 | 217 |
int nmx,dim; |
238 |
double d,bmx,db,b,h;
|
|
239 |
double up,vp,pp;
|
|
240 |
double us,vs,ps;
|
|
241 |
double rp[2000];
|
|
242 |
double **zp,**fp;
|
|
218 |
MYFLOAT d,bmx,db,b,h;
|
|
219 |
MYFLOAT up,vp,pp;
|
|
220 |
MYFLOAT us,vs,ps;
|
|
221 |
MYFLOAT rp[TRACKPOINTS];
|
|
222 |
MYFLOAT **zp,**fp;
|
|
243 | 223 |
unsigned int **izp,**ifp; |
244 |
double zmx,fmx,zen,fen; |
|
245 |
double flux_tot,impc_tot; |
|
246 |
double fx[nbr]; |
|
247 |
int nt[nbr]; |
|
248 |
double tableau[3][nbr]; |
|
249 |
double phi,thi,thx,phd,php,nr,r; |
|
224 |
MYFLOAT zmx,fmx,zen,fen; |
|
225 |
int zimx=0,zjmx=0,fimx=0,fjmx=0; |
|
226 |
MYFLOAT flux_tot,impc_tot; |
|
227 |
MYFLOAT phi,thi,thx,phd,php,nr,r; |
|
250 | 228 |
int ni,ii,i,imx,j,n,tst,dist,raie,pc,fcl,zcl; |
251 |
double nh; |
|
252 |
|
|
229 |
MYFLOAT nh; |
|
230 |
struct timeval tv1,tv2; |
|
231 |
struct timezone tz; |
|
232 |
double elapsed; |
|
233 |
|
|
253 | 234 |
if (argc==2) |
254 | 235 |
{ |
255 | 236 |
if (strcmp(argv[1],"-aide")==0) |
256 | 237 |
{ |
257 | 238 |
printf("\nSimulation d'un disque d'accretion autour d'un trou noir\n"); |
258 | 239 |
printf("\nParametres a definir :\n\n"); |
259 |
printf(" 1) Dimension de l'Image\n"); |
|
260 |
printf(" 2) Masse relative du trou noir\n"); |
|
261 |
printf(" 3) Dimension du disque exterieur\n"); |
|
262 |
printf(" 4) Distance de l'observateur\n"); |
|
263 |
printf(" 5) Inclinaison par rapport au disque (en degres)\n"); |
|
264 |
printf(" 6) Observation a distance FINIE ou INFINIE\n"); |
|
265 |
printf(" 7) Rayonnement de disque MONOCHROMATIQUE ou CORPS_NOIR\n"); |
|
266 |
printf(" 8) Normalisation des flux INTERNE ou EXTERNE\n"); |
|
267 |
printf(" 9) Normalisation de z INTERNE ou EXTERNE\n"); |
|
268 |
printf(" 10) Impression des images NEGATIVE ou POSITIVE\n"); |
|
269 |
printf(" 11) Nom de l'image des Flux\n"); |
|
270 |
printf(" 12) Nom de l'image des decalages spectraux\n"); |
|
271 |
printf(" 13) Nom du fichier contenant le spectre\n"); |
|
272 |
printf(" 14) Valeur de normalisation des flux\n"); |
|
273 |
printf(" 15) Valeur de normalisation des decalages spectraux\n"); |
|
240 |
printf(" 1) Dimension de l'Image\n"); |
|
241 |
printf(" 2) Masse relative du trou noir\n"); |
|
242 |
printf(" 3) Dimension du disque exterieur\n"); |
|
243 |
printf(" 4) Inclinaison par rapport au disque (en degres)\n"); |
|
244 |
printf(" 5) Rayonnement de disque MONOCHROMATIQUE ou CORPS_NOIR\n"); |
|
245 |
printf(" 6) Impression des images NEGATIVE ou POSITIVE\n"); |
|
246 |
printf(" 7) Nom de l'image des Flux\n"); |
|
247 |
printf(" 8) Nom de l'image des decalages spectraux\n"); |
|
274 | 248 |
printf("\nSi aucun parametre defini, parametres par defaut :\n\n"); |
275 |
printf(" 1) Dimension de l'image : 256 pixels de cote\n"); |
|
276 |
printf(" 2) Masse relative du trou noir : 1\n"); |
|
277 |
printf(" 3) Dimension du disque exterieur : 12 \n"); |
|
278 |
printf(" 4) Distance de l'observateur : 100 \n"); |
|
279 |
printf(" 5) Inclinaison par rapport au disque (en degres) : 10\n"); |
|
280 |
printf(" 6) Observation a distance FINIE\n"); |
|
281 |
printf(" 7) Rayonnement de disque MONOCHROMATIQUE\n"); |
|
282 |
printf(" 8) Normalisation des flux INTERNE\n"); |
|
283 |
printf(" 9) Normalisation des z INTERNE\n"); |
|
284 |
printf(" 10) Impression des images NEGATIVE ou POSITIVE\n"); |
|
285 |
printf(" 11) Nom de l'image des flux : flux.pgm\n"); |
|
286 |
printf(" 12) Nom de l'image des z : z.pgm\n"); |
|
287 |
printf(" 13) Nom du fichier contenant le spectre : spectre.dat\n"); |
|
288 |
printf(" 14) <non definie>\n"); |
|
289 |
printf(" 15) <non definie>\n"); |
|
249 |
printf(" 1) Dimension de l'image : 1024 pixels de cote\n"); |
|
250 |
printf(" 2) Masse relative du trou noir : 1\n"); |
|
251 |
printf(" 3) Dimension du disque exterieur : 12 \n"); |
|
252 |
printf(" 4) Inclinaison par rapport au disque (en degres) : 10\n"); |
|
253 |
printf(" 5) Rayonnement de disque CORPS_NOIR\n"); |
|
254 |
printf(" 6) Impression des images NEGATIVE ou POSITIVE\n"); |
|
255 |
printf(" 7) Nom de l'image des flux : flux.pgm\n"); |
|
256 |
printf(" 8) Nom de l'image des z : z.pgm\n"); |
|
290 | 257 |
} |
291 | 258 |
} |
292 | 259 |
|
293 |
if ((argc==14)||(argc==16))
|
|
260 |
if (argc==9)
|
|
294 | 261 |
{ |
295 | 262 |
printf("# Utilisation les valeurs definies par l'utilisateur\n"); |
296 | 263 |
|
297 | 264 |
dim=atoi(argv[1]); |
298 | 265 |
m=atof(argv[2]); |
299 | 266 |
re=atof(argv[3]); |
300 |
ro=atof(argv[4]); |
|
301 |
tho=PI/180.*(90-atof(argv[5])); |
|
267 |
tho=PI/180.*(90-atof(argv[4])); |
|
302 | 268 |
|
303 | 269 |
rs=2.*m; |
304 | 270 |
ri=3.*rs; |
305 |
q=-2; |
|
306 | 271 |
|
307 |
if (strcmp(argv[6],"FINIE")==0)
|
|
272 |
if (strcmp(argv[5],"CORPS_NOIR")==0)
|
|
308 | 273 |
{ |
309 |
dist=0; |
|
310 |
} |
|
311 |
else |
|
312 |
{ |
|
313 |
dist=1; |
|
314 |
} |
|
315 |
|
|
316 |
if (strcmp(argv[7],"MONOCHROMATIQUE")==0) |
|
317 |
{ |
|
318 | 274 |
raie=0; |
319 | 275 |
} |
320 | 276 |
else |
... | ... | |
322 | 278 |
raie=1; |
323 | 279 |
} |
324 | 280 |
|
325 |
if (strcmp(argv[8],"EXTERNE")==0) |
|
326 |
{ |
|
327 |
fen=atof(argv[14]); |
|
328 |
} |
|
329 |
|
|
330 |
if (strcmp(argv[9],"EXTERNE")==0) |
|
331 |
{ |
|
332 |
zen=atof(argv[15]); |
|
333 |
} |
|
334 |
|
|
335 | 281 |
} |
336 | 282 |
else |
337 | 283 |
{ |
338 | 284 |
printf("# Utilisation les valeurs par defaut\n"); |
339 | 285 |
|
340 |
dim=256;
|
|
286 |
dim=1024;
|
|
341 | 287 |
m=1.; |
342 | 288 |
rs=2.*m; |
343 | 289 |
ri=3.*rs; |
344 | 290 |
re=12.; |
345 |
ro=100.; |
|
346 | 291 |
tho=PI/180.*80; |
347 |
q=-2; |
|
348 |
dist=0; |
|
292 |
// Corps noir |
|
349 | 293 |
raie=0; |
350 | 294 |
} |
351 |
|
|
295 |
|
|
296 |
if (raie==1) |
|
297 |
{ |
|
298 |
bss=2.; |
|
299 |
q=-2; |
|
300 |
} |
|
301 |
else |
|
302 |
{ |
|
303 |
bss=1.e19; |
|
304 |
q=-0.75; |
|
305 |
} |
|
306 |
|
|
352 | 307 |
printf("# Dimension de l'image : %i\n",dim); |
353 | 308 |
printf("# Masse : %f\n",m); |
354 | 309 |
printf("# Rayon singularite : %f\n",rs); |
355 | 310 |
printf("# Rayon interne : %f\n",ri); |
356 | 311 |
printf("# Rayon externe : %f\n",re); |
357 |
printf("# Distance de l'observateur : %f\n",ro); |
|
358 | 312 |
printf("# Inclinaison a la normale en radian : %f\n",tho); |
359 | 313 |
|
360 |
for (i=0;i<nbr;i++) |
|
361 |
{ |
|
362 |
fx[i]=0.; |
|
363 |
nt[i]=0; |
|
364 |
} |
|
365 |
|
|
366 |
zp=(double**)calloc(dim,sizeof(double*)); |
|
367 |
zp[0]=(double*)calloc(dim*dim,sizeof(double)); |
|
314 |
zp=(MYFLOAT**)calloc(dim,sizeof(MYFLOAT*)); |
|
315 |
zp[0]=(MYFLOAT*)calloc(dim*dim,sizeof(MYFLOAT)); |
|
368 | 316 |
|
369 |
fp=(double**)calloc(dim,sizeof(double*));
|
|
370 |
fp[0]=(double*)calloc(dim*dim,sizeof(double));
|
|
317 |
fp=(MYFLOAT**)calloc(dim,sizeof(MYFLOAT*));
|
|
318 |
fp[0]=(MYFLOAT*)calloc(dim*dim,sizeof(MYFLOAT));
|
|
371 | 319 |
|
372 | 320 |
izp=(unsigned int**)calloc(dim,sizeof(unsigned int*)); |
373 | 321 |
izp[0]=(unsigned int*)calloc(dim*dim,sizeof(unsigned int)); |
... | ... | |
381 | 329 |
fp[i]=fp[i-1]+dim; |
382 | 330 |
izp[i]=izp[i-1]+dim; |
383 | 331 |
ifp[i]=ifp[i-1]+dim; |
384 |
}
|
|
332 |
} |
|
385 | 333 |
|
386 | 334 |
nmx=dim; |
387 | 335 |
stp=dim/(2.*nmx); |
388 | 336 |
bmx=1.25*re; |
389 | 337 |
b=0.; |
390 |
thx=asin(bmx/ro); |
|
391 | 338 |
pc=0; |
392 | 339 |
|
393 |
if (raie==0) |
|
394 |
{ |
|
395 |
bss=2; |
|
396 |
} |
|
397 |
else |
|
398 |
{ |
|
399 |
bss=3e21; |
|
400 |
} |
|
340 |
// Set start timer |
|
341 |
gettimeofday(&tv1, &tz); |
|
401 | 342 |
|
402 | 343 |
for (n=1;n<=nmx;n++) |
403 | 344 |
{ |
404 |
h=PI/500.;
|
|
345 |
h=4.*PI/(MYFLOAT)TRACKPOINTS;
|
|
405 | 346 |
d=stp*n; |
406 | 347 |
|
407 |
if (dist==1) |
|
408 |
{ |
|
409 |
db=bmx/(double)nmx; |
|
410 |
b=db*(double)n; |
|
411 |
up=0.; |
|
412 |
vp=1.; |
|
413 |
} |
|
414 |
else |
|
415 |
{ |
|
416 |
thi=thx/(double)nmx*(double)n; |
|
417 |
db=ro*sin(thi)-b; |
|
418 |
b=ro*sin(thi); |
|
419 |
up=sin(thi); |
|
420 |
vp=cos(thi); |
|
421 |
} |
|
348 |
db=bmx/(MYFLOAT)nmx; |
|
349 |
b=db*(MYFLOAT)n; |
|
350 |
up=0.; |
|
351 |
vp=1.; |
|
422 | 352 |
|
423 | 353 |
pp=0.; |
424 | 354 |
nh=1; |
... | ... | |
439 | 369 |
|
440 | 370 |
} while ((rp[(int)nh]>=rs)&&(rp[(int)nh]<=rp[1])); |
441 | 371 |
|
442 |
for (i=nh+1;i<2000;i++)
|
|
372 |
for (i=nh+1;i<TRACKPOINTS;i++)
|
|
443 | 373 |
{ |
444 | 374 |
rp[i]=0.; |
445 | 375 |
} |
... | ... | |
448 | 378 |
|
449 | 379 |
for (i=0;i<=imx;i++) |
450 | 380 |
{ |
451 |
phi=2.*PI/(double)imx*(double)i;
|
|
381 |
phi=2.*PI/(MYFLOAT)imx*(MYFLOAT)i;
|
|
452 | 382 |
phd=atanp(cos(phi)*sin(tho),cos(tho)); |
453 | 383 |
phd=fmod(phd,PI); |
454 | 384 |
ii=0; |
... | ... | |
456 | 386 |
|
457 | 387 |
do |
458 | 388 |
{ |
459 |
php=phd+(double)ii*PI;
|
|
389 |
php=phd+(MYFLOAT)ii*PI;
|
|
460 | 390 |
nr=php/h; |
461 | 391 |
ni=(int)nr; |
462 | 392 |
|
463 |
if ((double)ni<nh)
|
|
393 |
if ((MYFLOAT)ni<nh)
|
|
464 | 394 |
{ |
465 | 395 |
r=(rp[ni+1]-rp[ni])*(nr-ni*1.)+rp[ni]; |
466 | 396 |
} |
... | ... | |
472 | 402 |
if ((r<=re)&&(r>=ri)) |
473 | 403 |
{ |
474 | 404 |
tst=1; |
475 |
impact(d,phi,dim,r,b,tho,m,zp,fp,nt,fx,q,db,h,bss,raie);
|
|
405 |
impact(d,phi,dim,r,b,tho,m,zp,fp,q,db,h,bss,raie); |
|
476 | 406 |
} |
477 | 407 |
|
478 | 408 |
ii++; |
... | ... | |
480 | 410 |
} |
481 | 411 |
} |
482 | 412 |
|
413 |
// Set stop timer |
|
414 |
gettimeofday(&tv2, &tz); |
|
415 |
|
|
416 |
elapsed=(double)((tv2.tv_sec-tv1.tv_sec) * 1000000L + |
|
417 |
(tv2.tv_usec-tv1.tv_usec))/1000000; |
|
418 |
|
|
483 | 419 |
fmx=fp[0][0]; |
484 | 420 |
zmx=zp[0][0]; |
485 | 421 |
|
... | ... | |
487 | 423 |
{ |
488 | 424 |
if (fmx<fp[i][j]) |
489 | 425 |
{ |
426 |
fimx=i; |
|
427 |
fjmx=j; |
|
490 | 428 |
fmx=fp[i][j]; |
491 | 429 |
} |
492 | 430 |
|
493 | 431 |
if (zmx<zp[i][j]) |
494 | 432 |
{ |
433 |
zimx=i; |
|
434 |
zjmx=j; |
|
495 | 435 |
zmx=zp[i][j]; |
496 | 436 |
} |
497 | 437 |
} |
498 | 438 |
|
499 |
printf("\nLe flux maximal detecte est de %f",fmx); |
|
500 |
printf("\nLe decalage spectral maximal detecte est de %f\n\n",zmx); |
|
439 |
printf("\nElapsed Time : %lf",(double)elapsed); |
|
440 |
printf("\nZ max @(%i,%i) : %f",zimx,zjmx,zmx); |
|
441 |
printf("\nFlux max @(%i,%i) : %f\n\n",fimx,fjmx,fmx); |
|
501 | 442 |
|
502 |
if (strcmp(argv[8],"EXTERNE")==0) |
|
503 |
{ |
|
504 |
fmx=fen; |
|
505 |
} |
|
506 |
|
|
507 |
if (strcmp(argv[9],"EXTERNE")==0) |
|
508 |
{ |
|
509 |
zmx=zen; |
|
510 |
} |
|
511 |
|
|
512 | 443 |
for (i=0;i<dim;i++) for (j=0;j<dim;j++) |
513 | 444 |
{ |
514 | 445 |
zcl=(int)(255/zmx*zp[i][dim-1-j]); |
515 | 446 |
fcl=(int)(255/fmx*fp[i][dim-1-j]); |
516 | 447 |
|
517 |
if (strcmp(argv[8],"NEGATIVE")==0)
|
|
448 |
if (strcmp(argv[6],"NEGATIVE")==0)
|
|
518 | 449 |
{ |
519 | 450 |
if (zcl>255) |
520 | 451 |
{ |
... | ... | |
559 | 490 |
|
560 | 491 |
} |
561 | 492 |
|
562 |
flux_tot=0; |
|
563 |
impc_tot=0; |
|
564 |
|
|
565 |
for (i=1;i<nbr;i++) |
|
566 |
{ |
|
567 |
flux_tot+=fx[i]; |
|
568 |
impc_tot+=nt[i]; |
|
569 |
} |
|
570 |
|
|
571 |
for (i=1;i<nbr;i++) |
|
572 |
{ |
|
573 |
tableau[0][i]=bss*i/nbr; |
|
574 |
tableau[1][i]=fx[i]/flux_tot; |
|
575 |
tableau[2][i]=(double)nt[i]/(double)impc_tot; |
|
576 |
} |
|
577 |
|
|
578 |
if ((argc==14)||(argc==16)) |
|
493 |
if (argc==9) |
|
579 | 494 |
{ |
580 |
sauvegarde_pgm(argv[11],ifp,dim); |
|
581 |
sauvegarde_pgm(argv[12],izp,dim); |
|
582 |
sauvegarde_dat(argv[13],tableau,raie); |
|
495 |
sauvegarde_pgm(argv[7],ifp,dim); |
|
496 |
sauvegarde_pgm(argv[8],izp,dim); |
|
583 | 497 |
} |
584 | 498 |
else |
585 | 499 |
{ |
586 | 500 |
sauvegarde_pgm("z.pgm",izp,dim); |
587 | 501 |
sauvegarde_pgm("flux.pgm",ifp,dim); |
588 |
sauvegarde_dat("spectre.dat",tableau,raie); |
|
589 | 502 |
} |
590 | 503 |
|
591 | 504 |
free(zp[0]); |
Formats disponibles : Unified diff