root / TrouNoir / TrouNoir.py @ 212
Historique | Voir | Annoter | Télécharger (23,66 ko)
1 | 199 | equemene | #!/usr/bin/env python
|
---|---|---|---|
2 | 199 | equemene | #
|
3 | 199 | equemene | # TrouNoir model using PyOpenCL
|
4 | 199 | equemene | #
|
5 | 204 | equemene | # CC BY-NC-SA 2019 : <emmanuel.quemener@ens-lyon.fr>
|
6 | 199 | equemene | #
|
7 | 199 | equemene | # Thanks to Andreas Klockner for PyOpenCL:
|
8 | 199 | equemene | # http://mathema.tician.de/software/pyopencl
|
9 | 199 | equemene | #
|
10 | 204 | equemene | # Original code programmed in Fortran 77 in mars 1994
|
11 | 204 | equemene | # for Practical Work of Numerical Simulation
|
12 | 204 | equemene | # DEA (old Master2) in astrophysics and spatial techniques in Meudon
|
13 | 204 | equemene | # by Herve Aussel & Emmanuel Quemener
|
14 | 204 | equemene | #
|
15 | 204 | equemene | # Conversion in C done by Emmanuel Quemener in august 1997
|
16 | 204 | equemene | # GPUfication in OpenCL under Python in july 2019
|
17 | 204 | equemene | #
|
18 | 204 | equemene | # Thanks to :
|
19 | 204 | equemene | #
|
20 | 204 | equemene | # - Herve Aussel for his part of code of black body spectrum
|
21 | 204 | equemene | # - Didier Pelat for his help to perform this work
|
22 | 204 | equemene | # - Jean-Pierre Luminet for his article published in 1979
|
23 | 204 | equemene | # - Numerical Recipies for Runge Kutta recipies
|
24 | 204 | equemene | # - Luc Blanchet for his disponibility about my questions in General Relativity
|
25 | 204 | equemene | # - Pierre Lena for his passion about science and vulgarisation
|
26 | 199 | equemene | |
27 | 199 | equemene | import pyopencl as cl |
28 | 199 | equemene | import numpy |
29 | 199 | equemene | import time,string |
30 | 199 | equemene | from numpy.random import randint as nprnd |
31 | 199 | equemene | import sys |
32 | 199 | equemene | import getopt |
33 | 199 | equemene | import matplotlib.pyplot as plt |
34 | 211 | equemene | from socket import gethostname |
35 | 199 | equemene | |
36 | 211 | equemene | def DictionariesAPI(): |
37 | 211 | equemene | PhysicsList={'Einstein':0,'Newton':1} |
38 | 211 | equemene | return(PhysicsList)
|
39 | 204 | equemene | |
40 | 211 | equemene | BlobOpenCL= """
|
41 | 204 | equemene |
|
42 | 199 | equemene | #define PI (float)3.14159265359
|
43 | 209 | equemene | #define nbr 256
|
44 | 199 | equemene |
|
45 | 211 | equemene | #define EINSTEIN 0
|
46 | 211 | equemene | #define NEWTON 1
|
47 | 211 | equemene |
|
48 | 199 | equemene | float atanp(float x,float y)
|
49 | 199 | equemene | {
|
50 | 199 | equemene | float angle;
|
51 | 199 | equemene |
|
52 | 199 | equemene | angle=atan2(y,x);
|
53 | 199 | equemene |
|
54 | 204 | equemene | if (angle<0.e0f)
|
55 | 199 | equemene | {
|
56 | 199 | equemene | angle+=(float)2.e0f*PI;
|
57 | 199 | equemene | }
|
58 | 199 | equemene |
|
59 | 199 | equemene | return angle;
|
60 | 199 | equemene | }
|
61 | 199 | equemene |
|
62 | 199 | equemene | float f(float v)
|
63 | 199 | equemene | {
|
64 | 199 | equemene | return v;
|
65 | 199 | equemene | }
|
66 | 199 | equemene |
|
67 | 211 | equemene | #if PHYSICS == NEWTON
|
68 | 199 | equemene | float g(float u,float m,float b)
|
69 | 199 | equemene | {
|
70 | 211 | equemene | return (-u);
|
71 | 211 | equemene | }
|
72 | 211 | equemene | #else
|
73 | 211 | equemene | float g(float u,float m,float b)
|
74 | 211 | equemene | {
|
75 | 204 | equemene | return (3.e0f*m/b*pow(u,2)-u);
|
76 | 199 | equemene | }
|
77 | 211 | equemene | #endif
|
78 | 199 | equemene |
|
79 | 199 | equemene | void calcul(float *us,float *vs,float up,float vp,
|
80 | 199 | equemene | float h,float m,float b)
|
81 | 199 | equemene | {
|
82 | 199 | equemene | float c0,c1,c2,c3,d0,d1,d2,d3;
|
83 | 199 | equemene |
|
84 | 199 | equemene | c0=h*f(vp);
|
85 | 199 | equemene | c1=h*f(vp+c0/2.);
|
86 | 199 | equemene | c2=h*f(vp+c1/2.);
|
87 | 199 | equemene | c3=h*f(vp+c2);
|
88 | 199 | equemene | d0=h*g(up,m,b);
|
89 | 199 | equemene | d1=h*g(up+d0/2.,m,b);
|
90 | 199 | equemene | d2=h*g(up+d1/2.,m,b);
|
91 | 199 | equemene | d3=h*g(up+d2,m,b);
|
92 | 199 | equemene |
|
93 | 199 | equemene | *us=up+(c0+2.*c1+2.*c2+c3)/6.;
|
94 | 199 | equemene | *vs=vp+(d0+2.*d1+2.*d2+d3)/6.;
|
95 | 199 | equemene | }
|
96 | 199 | equemene |
|
97 | 199 | equemene | void rungekutta(float *ps,float *us,float *vs,
|
98 | 199 | equemene | float pp,float up,float vp,
|
99 | 199 | equemene | float h,float m,float b)
|
100 | 199 | equemene | {
|
101 | 199 | equemene | calcul(us,vs,up,vp,h,m,b);
|
102 | 199 | equemene | *ps=pp+h;
|
103 | 199 | equemene | }
|
104 | 199 | equemene |
|
105 | 199 | equemene | float decalage_spectral(float r,float b,float phi,
|
106 | 199 | equemene | float tho,float m)
|
107 | 199 | equemene | {
|
108 | 199 | equemene | return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi)));
|
109 | 199 | equemene | }
|
110 | 199 | equemene |
|
111 | 199 | equemene | float spectre(float rf,int q,float b,float db,
|
112 | 199 | equemene | float h,float r,float m,float bss)
|
113 | 199 | equemene | {
|
114 | 199 | equemene | float flx;
|
115 | 199 | equemene |
|
116 | 209 | equemene | flx=exp(q*log(r/m))*pow(rf,4)*b*db*h;
|
117 | 199 | equemene | return(flx);
|
118 | 199 | equemene | }
|
119 | 199 | equemene |
|
120 | 209 | equemene | float spectre_cn(float rf32,float b32,float db32,
|
121 | 209 | equemene | float h32,float r32,float m32,float bss32)
|
122 | 199 | equemene | {
|
123 | 209 | equemene |
|
124 | 209 | equemene | #define MYFLOAT double
|
125 | 209 | equemene |
|
126 | 209 | equemene | MYFLOAT rf=(MYFLOAT)(rf32);
|
127 | 209 | equemene | MYFLOAT b=(MYFLOAT)(b32);
|
128 | 209 | equemene | MYFLOAT db=(MYFLOAT)(db32);
|
129 | 209 | equemene | MYFLOAT h=(MYFLOAT)(h32);
|
130 | 209 | equemene | MYFLOAT r=(MYFLOAT)(r32);
|
131 | 209 | equemene | MYFLOAT m=(MYFLOAT)(m32);
|
132 | 209 | equemene | MYFLOAT bss=(MYFLOAT)(bss32);
|
133 | 209 | equemene |
|
134 | 209 | equemene | MYFLOAT flx;
|
135 | 209 | equemene | MYFLOAT nu_rec,nu_em,qu,temp_em,flux_int;
|
136 | 199 | equemene | int fi,posfreq;
|
137 | 199 | equemene |
|
138 | 209 | equemene | #define planck 6.62e-34
|
139 | 209 | equemene | #define k 1.38e-23
|
140 | 209 | equemene | #define c2 9.e16
|
141 | 209 | equemene | #define temp 3.e7
|
142 | 209 | equemene | #define m_point 1.
|
143 | 199 | equemene |
|
144 | 209 | equemene | #define lplanck (log(6.62)-34.*log(10.))
|
145 | 209 | equemene | #define lk (log(1.38)-23.*log(10.))
|
146 | 209 | equemene | #define lc2 (log(9.)+16.*log(10.))
|
147 | 199 | equemene |
|
148 | 209 | equemene | MYFLOAT v=1.-3./r;
|
149 | 199 | equemene |
|
150 | 209 | equemene | qu=1./sqrt((1.-3./r)*r)*(sqrt(r)-sqrt(6.)+sqrt(3.)/2.*log((sqrt(r)+sqrt(3.))/(sqrt(r)-sqrt(3.))* 0.17157287525380988 ));
|
151 | 199 | equemene |
|
152 | 209 | equemene | temp_em=temp*sqrt(m)*exp(0.25*log(m_point)-0.75*log(r)-0.125*log(v)+0.25*log(fabs(qu)));
|
153 | 209 | equemene |
|
154 | 209 | equemene | flux_int=0.;
|
155 | 209 | equemene | flx=0.;
|
156 | 209 | equemene |
|
157 | 201 | equemene | for (fi=0;fi<nbr;fi++)
|
158 | 199 | equemene | {
|
159 | 209 | equemene | nu_em=bss*(MYFLOAT)fi/(MYFLOAT)nbr;
|
160 | 209 | equemene | nu_rec=nu_em*rf;
|
161 | 209 | equemene | posfreq=(int)(nu_rec*(MYFLOAT)nbr/bss);
|
162 | 199 | equemene | if ((posfreq>0)&&(posfreq<nbr))
|
163 | 199 | equemene | {
|
164 | 209 | equemene | // Initial version
|
165 | 211 | equemene | // flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.);
|
166 | 209 | equemene | // Version with log used
|
167 | 211 | equemene | //flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.);
|
168 | 211 | equemene | // flux_int*=pow(rf,3)*b*db*h;
|
169 | 211 | equemene | //flux_int*=exp(3.*log(rf))*b*db*h;
|
170 | 211 | equemene | flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.)*exp(3.*log(rf))*b*db*h;
|
171 | 211 | equemene |
|
172 | 199 | equemene | flx+=flux_int;
|
173 | 199 | equemene | }
|
174 | 199 | equemene | }
|
175 | 209 | equemene |
|
176 | 209 | equemene | return((float)(flx));
|
177 | 199 | equemene | }
|
178 | 199 | equemene |
|
179 | 199 | equemene | void impact(float phi,float r,float b,float tho,float m,
|
180 | 199 | equemene | float *zp,float *fp,
|
181 | 199 | equemene | int q,float db,
|
182 | 204 | equemene | float h,int raie)
|
183 | 199 | equemene | {
|
184 | 204 | equemene | float flx,rf,bss;
|
185 | 199 | equemene |
|
186 | 199 | equemene | rf=decalage_spectral(r,b,phi,tho,m);
|
187 | 199 | equemene |
|
188 | 199 | equemene | if (raie==0)
|
189 | 199 | equemene | {
|
190 | 209 | equemene | bss=1.e19;
|
191 | 209 | equemene | flx=spectre_cn(rf,b,db,h,r,m,bss);
|
192 | 209 | equemene | }
|
193 | 209 | equemene | else
|
194 | 209 | equemene | {
|
195 | 204 | equemene | bss=2.;
|
196 | 199 | equemene | flx=spectre(rf,q,b,db,h,r,m,bss);
|
197 | 199 | equemene | }
|
198 | 199 | equemene |
|
199 | 199 | equemene | *zp=1./rf;
|
200 | 199 | equemene | *fp=flx;
|
201 | 199 | equemene |
|
202 | 199 | equemene | }
|
203 | 199 | equemene |
|
204 | 204 | equemene | __kernel void EachPixel(__global float *zImage,__global float *fImage,
|
205 | 204 | equemene | float Mass,float InternalRadius,
|
206 | 204 | equemene | float ExternalRadius,float Angle,
|
207 | 209 | equemene | int Line)
|
208 | 199 | equemene | {
|
209 | 199 | equemene | uint xi=(uint)get_global_id(0);
|
210 | 199 | equemene | uint yi=(uint)get_global_id(1);
|
211 | 199 | equemene | uint sizex=(uint)get_global_size(0);
|
212 | 199 | equemene | uint sizey=(uint)get_global_size(1);
|
213 | 199 | equemene |
|
214 | 204 | equemene | // Perform trajectory for each pixel, exit on hit
|
215 | 199 | equemene |
|
216 | 209 | equemene | float m,rs,ri,re,tho;
|
217 | 209 | equemene | int q,raie;
|
218 | 199 | equemene |
|
219 | 204 | equemene | m=Mass;
|
220 | 204 | equemene | rs=2.*m;
|
221 | 204 | equemene | ri=InternalRadius;
|
222 | 204 | equemene | re=ExternalRadius;
|
223 | 204 | equemene | tho=Angle;
|
224 | 204 | equemene | q=-2;
|
225 | 209 | equemene | raie=Line;
|
226 | 204 | equemene |
|
227 | 199 | equemene | float d,bmx,db,b,h;
|
228 | 204 | equemene | float rp[2048];
|
229 | 204 | equemene | float phi,thi,phd,php,nr,r;
|
230 | 199 | equemene | int nh;
|
231 | 199 | equemene | float zp,fp;
|
232 | 199 | equemene |
|
233 | 199 | equemene | // Autosize for image
|
234 | 199 | equemene | bmx=1.25*re;
|
235 | 199 | equemene | b=0.;
|
236 | 199 | equemene |
|
237 | 204 | equemene | h=4.e0f*PI/(float)2048;
|
238 | 201 | equemene |
|
239 | 199 | equemene | // set origin as center of image
|
240 | 199 | equemene | float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
241 | 201 | equemene | float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
242 | 199 | equemene | // angle extracted from cylindric symmetry
|
243 | 199 | equemene | phi=atanp(x,y);
|
244 | 199 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
245 | 199 | equemene |
|
246 | 204 | equemene | float up,vp,pp,us,vs,ps;
|
247 | 204 | equemene |
|
248 | 204 | equemene | // impact parameter
|
249 | 204 | equemene | b=sqrt(x*x+y*y)*(float)2.e0f/(float)sizex*bmx;
|
250 | 204 | equemene | // step of impact parameter;
|
251 | 209 | equemene | // db=bmx/(float)(sizex/2);
|
252 | 209 | equemene | db=bmx/(float)(sizex);
|
253 | 204 | equemene |
|
254 | 209 | equemene | up=0.;
|
255 | 209 | equemene | vp=1.;
|
256 | 199 | equemene |
|
257 | 199 | equemene | pp=0.;
|
258 | 199 | equemene | nh=0;
|
259 | 199 | equemene |
|
260 | 199 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
261 | 199 | equemene |
|
262 | 199 | equemene | rp[nh]=fabs(b/us);
|
263 | 199 | equemene |
|
264 | 204 | equemene | int ExitOnImpact=0;
|
265 | 199 | equemene |
|
266 | 199 | equemene | do
|
267 | 199 | equemene | {
|
268 | 199 | equemene | nh++;
|
269 | 199 | equemene | pp=ps;
|
270 | 199 | equemene | up=us;
|
271 | 199 | equemene | vp=vs;
|
272 | 199 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
273 | 199 | equemene | rp[nh]=fabs(b/us);
|
274 | 200 | equemene | ExitOnImpact = ((fmod(pp,PI)<fmod(phd,PI))&&(fmod(ps,PI)>fmod(phd,PI)))&&(rp[nh]>ri)&&(rp[nh]<re)?1:0;
|
275 | 199 | equemene |
|
276 | 199 | equemene | } while ((rp[nh]>=rs)&&(rp[nh]<=rp[0])&&(ExitOnImpact==0));
|
277 | 199 | equemene |
|
278 | 199 | equemene | if (ExitOnImpact==1) {
|
279 | 204 | equemene | impact(phi,rp[nh-1],b,tho,m,&zp,&fp,q,db,h,raie);
|
280 | 199 | equemene | }
|
281 | 199 | equemene | else
|
282 | 199 | equemene | {
|
283 | 199 | equemene | zp=0.;
|
284 | 201 | equemene | fp=0.;
|
285 | 199 | equemene | }
|
286 | 199 | equemene |
|
287 | 204 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
288 | 204 | equemene |
|
289 | 201 | equemene | zImage[yi+sizex*xi]=(float)zp;
|
290 | 204 | equemene | fImage[yi+sizex*xi]=(float)fp;
|
291 | 204 | equemene | }
|
292 | 199 | equemene |
|
293 | 204 | equemene | __kernel void Pixel(__global float *zImage,__global float *fImage,
|
294 | 204 | equemene | __global float *Trajectories,__global int *IdLast,
|
295 | 204 | equemene | uint ImpactParameter,uint TrackPoints,
|
296 | 204 | equemene | float Mass,float InternalRadius,
|
297 | 204 | equemene | float ExternalRadius,float Angle,
|
298 | 209 | equemene | int Line)
|
299 | 204 | equemene | {
|
300 | 204 | equemene | uint xi=(uint)get_global_id(0);
|
301 | 204 | equemene | uint yi=(uint)get_global_id(1);
|
302 | 204 | equemene | uint sizex=(uint)get_global_size(0);
|
303 | 204 | equemene | uint sizey=(uint)get_global_size(1);
|
304 | 204 | equemene |
|
305 | 204 | equemene | // Perform trajectory for each pixel
|
306 | 204 | equemene |
|
307 | 209 | equemene | float m,rs,ri,re,tho;
|
308 | 209 | equemene | int q,raie;
|
309 | 204 | equemene |
|
310 | 204 | equemene | m=Mass;
|
311 | 204 | equemene | rs=2.*m;
|
312 | 204 | equemene | ri=InternalRadius;
|
313 | 204 | equemene | re=ExternalRadius;
|
314 | 204 | equemene | tho=Angle;
|
315 | 204 | equemene | q=-2;
|
316 | 209 | equemene | raie=Line;
|
317 | 204 | equemene |
|
318 | 204 | equemene | float d,bmx,db,b,h;
|
319 | 204 | equemene | float phi,thi,phd,php,nr,r;
|
320 | 204 | equemene | int nh;
|
321 | 204 | equemene | float zp=0,fp=0;
|
322 | 204 | equemene |
|
323 | 209 | equemene | // Autosize for image, 25% greater than external radius
|
324 | 204 | equemene | bmx=1.25*re;
|
325 | 204 | equemene |
|
326 | 204 | equemene | // Angular step of integration
|
327 | 204 | equemene | h=4.e0f*PI/(float)TrackPoints;
|
328 | 204 | equemene |
|
329 | 204 | equemene | // Step of Impact Parameter
|
330 | 209 | equemene | db=bmx/(2.e0*(float)ImpactParameter);
|
331 | 204 | equemene |
|
332 | 204 | equemene | // set origin as center of image
|
333 | 204 | equemene | float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
334 | 204 | equemene | float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
335 | 204 | equemene |
|
336 | 204 | equemene | // angle extracted from cylindric symmetry
|
337 | 204 | equemene | phi=atanp(x,y);
|
338 | 204 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
339 | 204 | equemene |
|
340 | 204 | equemene | // Real Impact Parameter
|
341 | 204 | equemene | b=sqrt(x*x+y*y)*bmx/(float)ImpactParameter;
|
342 | 204 | equemene |
|
343 | 204 | equemene | // Integer Impact Parameter
|
344 | 204 | equemene | uint bi=(uint)sqrt(x*x+y*y);
|
345 | 204 | equemene |
|
346 | 204 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
347 | 204 | equemene |
|
348 | 204 | equemene | if (bi<ImpactParameter)
|
349 | 204 | equemene | {
|
350 | 204 | equemene | do
|
351 | 204 | equemene | {
|
352 | 204 | equemene | php=phd+(float)HalfLap*PI;
|
353 | 204 | equemene | nr=php/h;
|
354 | 204 | equemene | ni=(int)nr;
|
355 | 204 | equemene |
|
356 | 204 | equemene | if (ni<IdLast[bi])
|
357 | 204 | equemene | {
|
358 | 204 | equemene | r=(Trajectories[bi*TrackPoints+ni+1]-Trajectories[bi*TrackPoints+ni])*(nr-ni*1.)+Trajectories[bi*TrackPoints+ni];
|
359 | 204 | equemene | }
|
360 | 204 | equemene | else
|
361 | 204 | equemene | {
|
362 | 204 | equemene | r=Trajectories[bi*TrackPoints+ni];
|
363 | 204 | equemene | }
|
364 | 204 | equemene |
|
365 | 204 | equemene | if ((r<=re)&&(r>=ri))
|
366 | 204 | equemene | {
|
367 | 204 | equemene | ExitOnImpact=1;
|
368 | 204 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
369 | 204 | equemene | }
|
370 | 204 | equemene |
|
371 | 204 | equemene | HalfLap++;
|
372 | 204 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
373 | 204 | equemene |
|
374 | 204 | equemene | }
|
375 | 204 | equemene |
|
376 | 201 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
377 | 204 | equemene |
|
378 | 204 | equemene | zImage[yi+sizex*xi]=zp;
|
379 | 204 | equemene | fImage[yi+sizex*xi]=fp;
|
380 | 204 | equemene | }
|
381 | 204 | equemene |
|
382 | 204 | equemene | __kernel void Circle(__global float *Trajectories,__global int *IdLast,
|
383 | 204 | equemene | __global float *zImage,__global float *fImage,
|
384 | 204 | equemene | int TrackPoints,
|
385 | 204 | equemene | float Mass,float InternalRadius,
|
386 | 204 | equemene | float ExternalRadius,float Angle,
|
387 | 209 | equemene | int Line)
|
388 | 204 | equemene | {
|
389 | 204 | equemene | // Integer Impact Parameter ID
|
390 | 204 | equemene | int bi=get_global_id(0);
|
391 | 204 | equemene | // Integer points on circle
|
392 | 204 | equemene | int i=get_global_id(1);
|
393 | 204 | equemene | // Integer Impact Parameter Size (half of image)
|
394 | 204 | equemene | int bmaxi=get_global_size(0);
|
395 | 204 | equemene | // Integer Points on circle
|
396 | 204 | equemene | int imx=get_global_size(1);
|
397 | 204 | equemene |
|
398 | 204 | equemene | // Perform trajectory for each pixel
|
399 | 204 | equemene |
|
400 | 209 | equemene | float m,rs,ri,re,tho;
|
401 | 209 | equemene | int q,raie;
|
402 | 204 | equemene |
|
403 | 204 | equemene | m=Mass;
|
404 | 204 | equemene | rs=2.*m;
|
405 | 204 | equemene | ri=InternalRadius;
|
406 | 204 | equemene | re=ExternalRadius;
|
407 | 204 | equemene | tho=Angle;
|
408 | 209 | equemene | raie=Line;
|
409 | 204 | equemene |
|
410 | 204 | equemene | float bmx,db,b,h;
|
411 | 204 | equemene | float phi,thi,phd;
|
412 | 204 | equemene | int nh;
|
413 | 204 | equemene | float zp=0,fp=0;
|
414 | 204 | equemene |
|
415 | 204 | equemene | // Autosize for image
|
416 | 204 | equemene | bmx=1.25*re;
|
417 | 204 | equemene |
|
418 | 204 | equemene | // Angular step of integration
|
419 | 204 | equemene | h=4.e0f*PI/(float)TrackPoints;
|
420 | 204 | equemene |
|
421 | 204 | equemene | // impact parameter
|
422 | 204 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
423 | 209 | equemene | db=bmx/(2.e0*(float)bmaxi);
|
424 | 204 | equemene |
|
425 | 204 | equemene | phi=2.*PI/(float)imx*(float)i;
|
426 | 204 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
427 | 204 | equemene | int yi=(int)((float)bi*sin(phi))+bmaxi;
|
428 | 204 | equemene | int xi=(int)((float)bi*cos(phi))+bmaxi;
|
429 | 204 | equemene |
|
430 | 204 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
431 | 204 | equemene | float php,nr,r;
|
432 | 204 | equemene |
|
433 | 204 | equemene | do
|
434 | 204 | equemene | {
|
435 | 204 | equemene | php=phd+(float)HalfLap*PI;
|
436 | 204 | equemene | nr=php/h;
|
437 | 204 | equemene | ni=(int)nr;
|
438 | 204 | equemene |
|
439 | 204 | equemene | if (ni<IdLast[bi])
|
440 | 204 | equemene | {
|
441 | 204 | equemene | r=(Trajectories[bi*TrackPoints+ni+1]-Trajectories[bi*TrackPoints+ni])*(nr-ni*1.)+Trajectories[bi*TrackPoints+ni];
|
442 | 204 | equemene | }
|
443 | 204 | equemene | else
|
444 | 204 | equemene | {
|
445 | 204 | equemene | r=Trajectories[bi*TrackPoints+ni];
|
446 | 204 | equemene | }
|
447 | 204 | equemene |
|
448 | 204 | equemene | if ((r<=re)&&(r>=ri))
|
449 | 204 | equemene | {
|
450 | 204 | equemene | ExitOnImpact=1;
|
451 | 204 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
452 | 204 | equemene | }
|
453 | 204 | equemene |
|
454 | 204 | equemene | HalfLap++;
|
455 | 204 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
456 | 204 | equemene |
|
457 | 204 | equemene | zImage[yi+2*bmaxi*xi]=zp;
|
458 | 204 | equemene | fImage[yi+2*bmaxi*xi]=fp;
|
459 | 204 | equemene |
|
460 | 204 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
461 | 204 | equemene |
|
462 | 204 | equemene | }
|
463 | 204 | equemene |
|
464 | 204 | equemene | __kernel void Trajectory(__global float *Trajectories,
|
465 | 204 | equemene | __global int *IdLast,int TrackPoints,
|
466 | 204 | equemene | float Mass,float InternalRadius,
|
467 | 204 | equemene | float ExternalRadius,float Angle,
|
468 | 209 | equemene | int Line)
|
469 | 204 | equemene | {
|
470 | 204 | equemene | // Integer Impact Parameter ID
|
471 | 204 | equemene | int bi=get_global_id(0);
|
472 | 204 | equemene | // Integer Impact Parameter Size (half of image)
|
473 | 204 | equemene | int bmaxi=get_global_size(0);
|
474 | 204 | equemene |
|
475 | 204 | equemene | // Perform trajectory for each pixel
|
476 | 204 | equemene |
|
477 | 209 | equemene | float m,rs,ri,re,tho;
|
478 | 209 | equemene | int raie,q;
|
479 | 204 | equemene |
|
480 | 204 | equemene | m=Mass;
|
481 | 204 | equemene | rs=2.*m;
|
482 | 204 | equemene | ri=InternalRadius;
|
483 | 204 | equemene | re=ExternalRadius;
|
484 | 204 | equemene | tho=Angle;
|
485 | 204 | equemene | q=-2;
|
486 | 209 | equemene | raie=Line;
|
487 | 204 | equemene |
|
488 | 204 | equemene | float d,bmx,db,b,h;
|
489 | 204 | equemene | float phi,thi,phd,php,nr,r;
|
490 | 204 | equemene | int nh;
|
491 | 204 | equemene | float zp,fp;
|
492 | 204 | equemene |
|
493 | 204 | equemene | // Autosize for image
|
494 | 204 | equemene | bmx=1.25*re;
|
495 | 204 | equemene |
|
496 | 204 | equemene | // Angular step of integration
|
497 | 204 | equemene | h=4.e0f*PI/(float)TrackPoints;
|
498 | 204 | equemene |
|
499 | 204 | equemene | // impact parameter
|
500 | 204 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
501 | 204 | equemene |
|
502 | 204 | equemene | float up,vp,pp,us,vs,ps;
|
503 | 204 | equemene |
|
504 | 209 | equemene | up=0.;
|
505 | 209 | equemene | vp=1.;
|
506 | 204 | equemene |
|
507 | 204 | equemene | pp=0.;
|
508 | 204 | equemene | nh=0;
|
509 | 204 | equemene |
|
510 | 204 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
511 | 204 | equemene |
|
512 | 204 | equemene | // b versus us
|
513 | 204 | equemene | float bvus=fabs(b/us);
|
514 | 204 | equemene | float bvus0=bvus;
|
515 | 204 | equemene | Trajectories[bi*TrackPoints+nh]=bvus;
|
516 | 204 | equemene |
|
517 | 204 | equemene | do
|
518 | 204 | equemene | {
|
519 | 204 | equemene | nh++;
|
520 | 204 | equemene | pp=ps;
|
521 | 204 | equemene | up=us;
|
522 | 204 | equemene | vp=vs;
|
523 | 204 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
524 | 204 | equemene | bvus=fabs(b/us);
|
525 | 204 | equemene | Trajectories[bi*TrackPoints+nh]=bvus;
|
526 | 204 | equemene |
|
527 | 204 | equemene | } while ((bvus>=rs)&&(bvus<=bvus0));
|
528 | 204 | equemene |
|
529 | 204 | equemene | IdLast[bi]=nh;
|
530 | 204 | equemene |
|
531 | 204 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
532 | 199 | equemene |
|
533 | 199 | equemene | }
|
534 | 211 | equemene | """
|
535 | 199 | equemene | |
536 | 211 | equemene | # def ImageOutput(sigma,prefix):
|
537 | 211 | equemene | # from PIL import Image
|
538 | 211 | equemene | # Max=sigma.max()
|
539 | 211 | equemene | # Min=sigma.min()
|
540 | 199 | equemene | |
541 | 211 | equemene | # # Normalize value as 8bits Integer
|
542 | 211 | equemene | # SigmaInt=(255*(sigma-Min)/(Max-Min)).astype('uint8')
|
543 | 211 | equemene | # image = Image.fromarray(SigmaInt)
|
544 | 211 | equemene | # image.save("%s.jpg" % prefix)
|
545 | 211 | equemene | |
546 | 211 | equemene | def ImageOutput(sigma,prefix,Colors): |
547 | 211 | equemene | import matplotlib.pyplot as plt |
548 | 211 | equemene | if Colors == 'Red2Yellow': |
549 | 211 | equemene | plt.imsave("%s.png" % prefix, sigma, cmap='afmhot') |
550 | 211 | equemene | else:
|
551 | 211 | equemene | plt.imsave("%s.png" % prefix, sigma, cmap='Greys_r') |
552 | 211 | equemene | |
553 | 204 | equemene | def BlackHoleCL(zImage,fImage,InputCL): |
554 | 199 | equemene | |
555 | 199 | equemene | kernel_params = {} |
556 | 199 | equemene | |
557 | 204 | equemene | print(InputCL) |
558 | 204 | equemene | |
559 | 204 | equemene | Device=InputCL['Device']
|
560 | 204 | equemene | GpuStyle=InputCL['GpuStyle']
|
561 | 204 | equemene | VariableType=InputCL['VariableType']
|
562 | 204 | equemene | Size=InputCL['Size']
|
563 | 204 | equemene | Mass=InputCL['Mass']
|
564 | 204 | equemene | InternalRadius=InputCL['InternalRadius']
|
565 | 204 | equemene | ExternalRadius=InputCL['ExternalRadius']
|
566 | 204 | equemene | Angle=InputCL['Angle']
|
567 | 204 | equemene | Method=InputCL['Method']
|
568 | 204 | equemene | TrackPoints=InputCL['TrackPoints']
|
569 | 211 | equemene | Physics=InputCL['Physics']
|
570 | 204 | equemene | |
571 | 211 | equemene | PhysicsList=DictionariesAPI() |
572 | 211 | equemene | |
573 | 204 | equemene | if InputCL['BlackBody']: |
574 | 209 | equemene | # Spectrum is Black Body one
|
575 | 209 | equemene | Line=0
|
576 | 204 | equemene | else:
|
577 | 209 | equemene | # Spectrum is Monochromatic Line one
|
578 | 209 | equemene | Line=1
|
579 | 204 | equemene | |
580 | 204 | equemene | Trajectories=numpy.zeros((InputCL['Size']/2,InputCL['TrackPoints']), |
581 | 204 | equemene | dtype=numpy.float32) |
582 | 204 | equemene | IdLast=numpy.zeros(InputCL['Size']/2,dtype=numpy.int32) |
583 | 204 | equemene | |
584 | 199 | equemene | # Je detecte un peripherique GPU dans la liste des peripheriques
|
585 | 199 | equemene | Id=0
|
586 | 199 | equemene | HasXPU=False
|
587 | 199 | equemene | for platform in cl.get_platforms(): |
588 | 199 | equemene | for device in platform.get_devices(): |
589 | 199 | equemene | if Id==Device:
|
590 | 199 | equemene | XPU=device |
591 | 199 | equemene | print "CPU/GPU selected: ",device.name.lstrip() |
592 | 199 | equemene | HasXPU=True
|
593 | 199 | equemene | Id+=1
|
594 | 199 | equemene | |
595 | 199 | equemene | if HasXPU==False: |
596 | 199 | equemene | print "No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1) |
597 | 199 | equemene | sys.exit() |
598 | 199 | equemene | |
599 | 199 | equemene | ctx = cl.Context([XPU]) |
600 | 199 | equemene | queue = cl.CommandQueue(ctx, |
601 | 199 | equemene | properties=cl.command_queue_properties.PROFILING_ENABLE) |
602 | 199 | equemene | |
603 | 199 | equemene | |
604 | 211 | equemene | # BlackHoleCL = cl.Program(ctx,KERNEL_CODE.substitute(kernel_params)).build()
|
605 | 211 | equemene | |
606 | 211 | equemene | BuildOptions="-cl-mad-enable -DPHYSICS=%i " % (PhysicsList[Physics])
|
607 | 211 | equemene | |
608 | 211 | equemene | BlackHoleCL = cl.Program(ctx,BlobOpenCL).build(options = BuildOptions) |
609 | 211 | equemene | |
610 | 199 | equemene | # Je recupere les flag possibles pour les buffers
|
611 | 199 | equemene | mf = cl.mem_flags |
612 | 199 | equemene | |
613 | 204 | equemene | TrajectoriesCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=Trajectories) |
614 | 201 | equemene | zImageCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=zImage) |
615 | 201 | equemene | fImageCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=fImage) |
616 | 204 | equemene | IdLastCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=IdLast) |
617 | 199 | equemene | |
618 | 199 | equemene | start_time=time.time() |
619 | 199 | equemene | |
620 | 204 | equemene | if Method=='EachPixel': |
621 | 204 | equemene | CLLaunch=BlackHoleCL.EachPixel(queue,(zImage.shape[0],zImage.shape[1]), |
622 | 204 | equemene | None,zImageCL,fImageCL,
|
623 | 204 | equemene | numpy.float32(Mass), |
624 | 204 | equemene | numpy.float32(InternalRadius), |
625 | 204 | equemene | numpy.float32(ExternalRadius), |
626 | 204 | equemene | numpy.float32(Angle), |
627 | 209 | equemene | numpy.int32(Line)) |
628 | 204 | equemene | CLLaunch.wait() |
629 | 204 | equemene | elif Method=='TrajectoCircle': |
630 | 204 | equemene | CLLaunch=BlackHoleCL.Trajectory(queue,(Trajectories.shape[0],),
|
631 | 204 | equemene | None,TrajectoriesCL,IdLastCL,
|
632 | 204 | equemene | numpy.uint32(Trajectories.shape[1]),
|
633 | 204 | equemene | numpy.float32(Mass), |
634 | 204 | equemene | numpy.float32(InternalRadius), |
635 | 204 | equemene | numpy.float32(ExternalRadius), |
636 | 204 | equemene | numpy.float32(Angle), |
637 | 209 | equemene | numpy.int32(Line)) |
638 | 204 | equemene | |
639 | 204 | equemene | CLLaunch=BlackHoleCL.Circle(queue,(Trajectories.shape[0],
|
640 | 204 | equemene | zImage.shape[0]*4),None, |
641 | 204 | equemene | TrajectoriesCL,IdLastCL, |
642 | 204 | equemene | zImageCL,fImageCL, |
643 | 204 | equemene | numpy.uint32(Trajectories.shape[1]),
|
644 | 204 | equemene | numpy.float32(Mass), |
645 | 204 | equemene | numpy.float32(InternalRadius), |
646 | 204 | equemene | numpy.float32(ExternalRadius), |
647 | 204 | equemene | numpy.float32(Angle), |
648 | 209 | equemene | numpy.int32(Line)) |
649 | 204 | equemene | CLLaunch.wait() |
650 | 204 | equemene | else:
|
651 | 204 | equemene | CLLaunch=BlackHoleCL.Trajectory(queue,(Trajectories.shape[0],),
|
652 | 204 | equemene | None,TrajectoriesCL,IdLastCL,
|
653 | 204 | equemene | numpy.uint32(Trajectories.shape[1]),
|
654 | 204 | equemene | numpy.float32(Mass), |
655 | 204 | equemene | numpy.float32(InternalRadius), |
656 | 204 | equemene | numpy.float32(ExternalRadius), |
657 | 204 | equemene | numpy.float32(Angle), |
658 | 209 | equemene | numpy.int32(Line)) |
659 | 204 | equemene | |
660 | 204 | equemene | CLLaunch=BlackHoleCL.Pixel(queue,(zImage.shape[0],
|
661 | 204 | equemene | zImage.shape[1]),None, |
662 | 204 | equemene | zImageCL,fImageCL,TrajectoriesCL,IdLastCL, |
663 | 204 | equemene | numpy.uint32(Trajectories.shape[0]),
|
664 | 204 | equemene | numpy.uint32(Trajectories.shape[1]),
|
665 | 204 | equemene | numpy.float32(Mass), |
666 | 204 | equemene | numpy.float32(InternalRadius), |
667 | 204 | equemene | numpy.float32(ExternalRadius), |
668 | 204 | equemene | numpy.float32(Angle), |
669 | 209 | equemene | numpy.int32(Line)) |
670 | 204 | equemene | CLLaunch.wait() |
671 | 204 | equemene | |
672 | 199 | equemene | elapsed = time.time()-start_time |
673 | 211 | equemene | print("\nElapsed Time : %f" % elapsed)
|
674 | 199 | equemene | |
675 | 201 | equemene | cl.enqueue_copy(queue,zImage,zImageCL).wait() |
676 | 201 | equemene | cl.enqueue_copy(queue,fImage,fImageCL).wait() |
677 | 204 | equemene | cl.enqueue_copy(queue,Trajectories,TrajectoriesCL).wait() |
678 | 204 | equemene | cl.enqueue_copy(queue,IdLast,IdLastCL).wait() |
679 | 211 | equemene | |
680 | 211 | equemene | zMaxPosition=numpy.where(zImage[:,:]==zImage.max()) |
681 | 211 | equemene | fMaxPosition=numpy.where(fImage[:,:]==fImage.max()) |
682 | 211 | equemene | print("Z max @(%i,%i) : %f" % (zMaxPosition[0],zMaxPosition[1],zImage.max())) |
683 | 211 | equemene | print("Flux max @(%i,%i) : %f\n" % (fMaxPosition[0],fMaxPosition[1],fImage.max())) |
684 | 201 | equemene | zImageCL.release() |
685 | 201 | equemene | fImageCL.release() |
686 | 204 | equemene | |
687 | 204 | equemene | TrajectoriesCL.release() |
688 | 204 | equemene | IdLastCL.release() |
689 | 204 | equemene | |
690 | 199 | equemene | return(elapsed)
|
691 | 199 | equemene | |
692 | 199 | equemene | if __name__=='__main__': |
693 | 199 | equemene | |
694 | 199 | equemene | GpuStyle = 'OpenCL'
|
695 | 199 | equemene | Mass = 1.
|
696 | 199 | equemene | # Internal Radius 3 times de Schwarzschild Radius
|
697 | 199 | equemene | InternalRadius=6.*Mass
|
698 | 199 | equemene | #
|
699 | 199 | equemene | ExternalRadius=12.
|
700 | 199 | equemene | #
|
701 | 199 | equemene | # Angle with normal to disc 10 degrees
|
702 | 199 | equemene | Angle = numpy.pi/180.*(90.-10.) |
703 | 199 | equemene | # Radiation of disc : BlackBody or Monochromatic
|
704 | 209 | equemene | BlackBody = False
|
705 | 199 | equemene | # Size of image
|
706 | 199 | equemene | Size=256
|
707 | 199 | equemene | # Variable Type
|
708 | 199 | equemene | VariableType='FP32'
|
709 | 199 | equemene | # ?
|
710 | 199 | equemene | q=-2
|
711 | 204 | equemene | # Method of resolution
|
712 | 209 | equemene | Method='TrajectoPixel'
|
713 | 211 | equemene | # Colors for output image
|
714 | 211 | equemene | Colors='Greyscale'
|
715 | 211 | equemene | # Physics
|
716 | 211 | equemene | Physics='Einstein'
|
717 | 211 | equemene | # No output as image
|
718 | 211 | equemene | NoImage = False
|
719 | 211 | equemene | |
720 | 211 | equemene | HowToUse='%s -h [Help] -b [BlackBodyEmission] -n [NoImage] -p <Einstein/Newton> -s <SizeInPixels> -m <Mass> -i <DiscInternalRadius> -x <DiscExternalRadius> -a <AngleAboveDisc> -d <DeviceId> -c <Greyscale/Red2Yellow> -g <CUDA/OpenCL> -t <EachPixel/TrajectoCircle/TrajectoPixel> -v <FP32/FP64>'
|
721 | 199 | equemene | |
722 | 199 | equemene | try:
|
723 | 211 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hbns:m:i:x:a:d:g:v:t:c:p:",["blackbody","noimage","camera","size=","mass=","internal=","external=","angle=","device=","gpustyle=","variabletype=","method=","colors=","physics="]) |
724 | 199 | equemene | except getopt.GetoptError:
|
725 | 199 | equemene | print(HowToUse % sys.argv[0])
|
726 | 199 | equemene | sys.exit(2)
|
727 | 199 | equemene | |
728 | 199 | equemene | # List of Devices
|
729 | 199 | equemene | Devices=[] |
730 | 199 | equemene | Alu={} |
731 | 199 | equemene | |
732 | 199 | equemene | for opt, arg in opts: |
733 | 199 | equemene | if opt == '-h': |
734 | 199 | equemene | print(HowToUse % sys.argv[0])
|
735 | 199 | equemene | |
736 | 199 | equemene | print("\nInformations about devices detected under OpenCL API:")
|
737 | 199 | equemene | # For PyOpenCL import
|
738 | 199 | equemene | try:
|
739 | 199 | equemene | import pyopencl as cl |
740 | 199 | equemene | Id=0
|
741 | 199 | equemene | for platform in cl.get_platforms(): |
742 | 199 | equemene | for device in platform.get_devices(): |
743 | 199 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
744 | 199 | equemene | deviceType="xPU"
|
745 | 199 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
746 | 199 | equemene | Id=Id+1
|
747 | 199 | equemene | |
748 | 199 | equemene | except:
|
749 | 199 | equemene | print("Your platform does not seem to support OpenCL")
|
750 | 199 | equemene | |
751 | 199 | equemene | print("\nInformations about devices detected under CUDA API:")
|
752 | 199 | equemene | # For PyCUDA import
|
753 | 199 | equemene | try:
|
754 | 199 | equemene | import pycuda.driver as cuda |
755 | 199 | equemene | cuda.init() |
756 | 199 | equemene | for Id in range(cuda.Device.count()): |
757 | 199 | equemene | device=cuda.Device(Id) |
758 | 199 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
759 | 199 | equemene | print
|
760 | 199 | equemene | except:
|
761 | 199 | equemene | print("Your platform does not seem to support CUDA")
|
762 | 199 | equemene | |
763 | 199 | equemene | sys.exit() |
764 | 199 | equemene | |
765 | 199 | equemene | elif opt in ("-d", "--device"): |
766 | 199 | equemene | # Devices.append(int(arg))
|
767 | 199 | equemene | Device=int(arg)
|
768 | 199 | equemene | elif opt in ("-g", "--gpustyle"): |
769 | 199 | equemene | GpuStyle = arg |
770 | 204 | equemene | elif opt in ("-v", "--variabletype"): |
771 | 199 | equemene | VariableType = arg |
772 | 199 | equemene | elif opt in ("-s", "--size"): |
773 | 199 | equemene | Size = int(arg)
|
774 | 199 | equemene | elif opt in ("-m", "--mass"): |
775 | 199 | equemene | Mass = float(arg)
|
776 | 199 | equemene | elif opt in ("-i", "--internal"): |
777 | 199 | equemene | InternalRadius = float(arg)
|
778 | 199 | equemene | elif opt in ("-e", "--external"): |
779 | 199 | equemene | ExternalRadius = float(arg)
|
780 | 199 | equemene | elif opt in ("-a", "--angle"): |
781 | 199 | equemene | Angle = numpy.pi/180.*(90.-float(arg)) |
782 | 199 | equemene | elif opt in ("-b", "--blackbody"): |
783 | 199 | equemene | BlackBody = True
|
784 | 211 | equemene | elif opt in ("-n", "--noimage"): |
785 | 211 | equemene | NoImage = True
|
786 | 204 | equemene | elif opt in ("-t", "--method"): |
787 | 204 | equemene | Method = arg |
788 | 211 | equemene | elif opt in ("-c", "--colors"): |
789 | 211 | equemene | Colors = arg |
790 | 211 | equemene | elif opt in ("-p", "--physics"): |
791 | 211 | equemene | Physics = arg |
792 | 199 | equemene | |
793 | 199 | equemene | print("Device Identification selected : %s" % Device)
|
794 | 199 | equemene | print("GpuStyle used : %s" % GpuStyle)
|
795 | 199 | equemene | print("VariableType : %s" % VariableType)
|
796 | 199 | equemene | print("Size : %i" % Size)
|
797 | 199 | equemene | print("Mass : %f" % Mass)
|
798 | 199 | equemene | print("Internal Radius : %f" % InternalRadius)
|
799 | 199 | equemene | print("External Radius : %f" % ExternalRadius)
|
800 | 199 | equemene | print("Angle with normal of (in radians) : %f" % Angle)
|
801 | 199 | equemene | print("Black Body Disc Emission (monochromatic instead) : %s" % BlackBody)
|
802 | 204 | equemene | print("Method of resolution : %s" % Method)
|
803 | 211 | equemene | print("Colors for output images : %s" % Colors)
|
804 | 211 | equemene | print("Physics used for Trajectories : %s" % Physics)
|
805 | 199 | equemene | |
806 | 199 | equemene | if GpuStyle=='CUDA': |
807 | 199 | equemene | print("\nSelection of CUDA device")
|
808 | 199 | equemene | try:
|
809 | 199 | equemene | # For PyCUDA import
|
810 | 199 | equemene | import pycuda.driver as cuda |
811 | 199 | equemene | |
812 | 199 | equemene | cuda.init() |
813 | 199 | equemene | for Id in range(cuda.Device.count()): |
814 | 199 | equemene | device=cuda.Device(Id) |
815 | 199 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
816 | 199 | equemene | if Id in Devices: |
817 | 199 | equemene | Alu[Id]='GPU'
|
818 | 199 | equemene | |
819 | 199 | equemene | except ImportError: |
820 | 199 | equemene | print("Platform does not seem to support CUDA")
|
821 | 199 | equemene | |
822 | 199 | equemene | if GpuStyle=='OpenCL': |
823 | 199 | equemene | print("\nSelection of OpenCL device")
|
824 | 199 | equemene | try:
|
825 | 199 | equemene | # For PyOpenCL import
|
826 | 199 | equemene | import pyopencl as cl |
827 | 199 | equemene | Id=0
|
828 | 199 | equemene | for platform in cl.get_platforms(): |
829 | 199 | equemene | for device in platform.get_devices(): |
830 | 199 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
831 | 199 | equemene | deviceType="xPU"
|
832 | 199 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
|
833 | 199 | equemene | |
834 | 199 | equemene | if Id in Devices: |
835 | 199 | equemene | # Set the Alu as detected Device Type
|
836 | 199 | equemene | Alu[Id]=deviceType |
837 | 199 | equemene | Id=Id+1
|
838 | 199 | equemene | except ImportError: |
839 | 199 | equemene | print("Platform does not seem to support OpenCL")
|
840 | 199 | equemene | |
841 | 199 | equemene | # print(Devices,Alu)
|
842 | 199 | equemene | |
843 | 199 | equemene | # MyImage=numpy.where(numpy.random.zeros(Size,Size)>0,1,-1).astype(numpy.float32)
|
844 | 204 | equemene | TrackPoints=2048
|
845 | 201 | equemene | zImage=numpy.zeros((Size,Size),dtype=numpy.float32) |
846 | 201 | equemene | fImage=numpy.zeros((Size,Size),dtype=numpy.float32) |
847 | 199 | equemene | |
848 | 204 | equemene | InputCL={} |
849 | 204 | equemene | InputCL['Device']=Device
|
850 | 204 | equemene | InputCL['GpuStyle']=GpuStyle
|
851 | 204 | equemene | InputCL['VariableType']=VariableType
|
852 | 204 | equemene | InputCL['Size']=Size
|
853 | 204 | equemene | InputCL['Mass']=Mass
|
854 | 204 | equemene | InputCL['InternalRadius']=InternalRadius
|
855 | 204 | equemene | InputCL['ExternalRadius']=ExternalRadius
|
856 | 204 | equemene | InputCL['Angle']=Angle
|
857 | 204 | equemene | InputCL['BlackBody']=BlackBody
|
858 | 204 | equemene | InputCL['Method']=Method
|
859 | 204 | equemene | InputCL['TrackPoints']=TrackPoints
|
860 | 211 | equemene | InputCL['Physics']=Physics
|
861 | 204 | equemene | |
862 | 204 | equemene | duration=BlackHoleCL(zImage,fImage,InputCL) |
863 | 199 | equemene | |
864 | 211 | equemene | Hostname=gethostname() |
865 | 211 | equemene | Date=time.strftime("%Y%m%d_%H%M%S")
|
866 | 211 | equemene | ImageInfo="%s_Device%i_%s_%s" % (Method,Device,Hostname,Date)
|
867 | 211 | equemene | |
868 | 211 | equemene | |
869 | 211 | equemene | if not NoImage: |
870 | 211 | equemene | ImageOutput(zImage,"TrouNoirZ_%s" % ImageInfo,Colors)
|
871 | 211 | equemene | ImageOutput(fImage,"TrouNoirF_%s" % ImageInfo,Colors) |