Révision 207
TrouNoir/trou_noir_1997.c (revision 207) | ||
---|---|---|
1 |
/* |
|
2 |
Programme original realise en Fortran 77 en mars 1994 |
|
3 |
pour les Travaux Pratiques de Modelisation Numerique |
|
4 |
DEA d'astrophysique et techniques spatiales de Meudon |
|
5 |
|
|
6 |
par Herve Aussel et Emmanuel Quemener |
|
7 |
|
|
8 |
Conversion en C par Emmanuel Quemener en aout 1997 |
|
9 |
|
|
10 |
Remerciements a : |
|
11 |
|
|
12 |
- Herve Aussel pour sa procedure sur le spectre de corps noir |
|
13 |
- Didier Pelat pour l'aide lors de ce travail |
|
14 |
- Jean-Pierre Luminet pour son article de 1979 |
|
15 |
- Le Numerical Recipies pour ses recettes de calcul |
|
16 |
- Luc Blanchet pour sa disponibilite lors de mes interrogations en RG |
|
17 |
|
|
18 |
Mes Coordonnees : Emmanuel Quemener |
|
19 |
Departement Optique |
|
20 |
ENST de Bretagne |
|
21 |
BP 832 |
|
22 |
29285 BREST Cedex |
|
23 |
|
|
24 |
Emmanuel.Quemener@enst-bretagne.fr |
|
25 |
|
|
26 |
Compilation sous gcc ( Compilateur GNU sous Linux ) : |
|
27 |
|
|
28 |
gcc -O6 -m486 -o trou_noir trou_noir.c -lm |
|
29 |
*/ |
|
30 |
|
|
31 |
#include <stdio.h> |
|
32 |
#include <math.h> |
|
33 |
#include <stdlib.h> |
|
34 |
#include <string.h> |
|
35 |
|
|
36 |
#define nbr 200 /* Nombre de colonnes du spectre */ |
|
37 |
|
|
38 |
#define PI 3.14159265359 |
|
39 |
|
|
40 |
double atanp(double x,double y) |
|
41 |
{ |
|
42 |
double angle; |
|
43 |
|
|
44 |
angle=atan2(y,x); |
|
45 |
|
|
46 |
if (angle<0) |
|
47 |
{ |
|
48 |
angle+=2*PI; |
|
49 |
} |
|
50 |
|
|
51 |
return angle; |
|
52 |
} |
|
53 |
|
|
54 |
|
|
55 |
double f(double v) |
|
56 |
{ |
|
57 |
return v; |
|
58 |
} |
|
59 |
|
|
60 |
double g(double u,double m,double b) |
|
61 |
{ |
|
62 |
// return (3.*m/b*pow(u,2)-u); |
|
63 |
return (3.*m/b*pow(u,2)-u); |
|
64 |
} |
|
65 |
|
|
66 |
|
|
67 |
void calcul(double *us,double *vs,double up,double vp, |
|
68 |
double h,double m,double b) |
|
69 |
{ |
|
70 |
double c[4],d[4]; |
|
71 |
|
|
72 |
c[0]=h*f(vp); |
|
73 |
c[1]=h*f(vp+c[0]/2.); |
|
74 |
c[2]=h*f(vp+c[1]/2.); |
|
75 |
c[3]=h*f(vp+c[2]); |
|
76 |
d[0]=h*g(up,m,b); |
|
77 |
d[1]=h*g(up+d[0]/2.,m,b); |
|
78 |
d[2]=h*g(up+d[1]/2.,m,b); |
|
79 |
d[3]=h*g(up+d[2],m,b); |
|
80 |
|
|
81 |
*us=up+(c[0]+2.*c[1]+2.*c[2]+c[3])/6.; |
|
82 |
*vs=vp+(d[0]+2.*d[1]+2.*d[2]+d[3])/6.; |
|
83 |
} |
|
84 |
|
|
85 |
void rungekutta(double *ps,double *us,double *vs, |
|
86 |
double pp,double up,double vp, |
|
87 |
double h,double m,double b) |
|
88 |
{ |
|
89 |
calcul(us,vs,up,vp,h,m,b); |
|
90 |
*ps=pp+h; |
|
91 |
} |
|
92 |
|
|
93 |
|
|
94 |
double decalage_spectral(double r,double b,double phi, |
|
95 |
double tho,double m) |
|
96 |
{ |
|
97 |
return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi))); |
|
98 |
} |
|
99 |
|
|
100 |
void spectre(int nt[nbr],double fx[nbr],double rf,int q,double b,double db, |
|
101 |
double h,double r,double m,double bss,double *flx) |
|
102 |
{ |
|
103 |
int fi; |
|
104 |
|
|
105 |
fi=(int)(rf*nbr/bss); |
|
106 |
nt[fi]+=1; |
|
107 |
*flx=pow(r/m,q)*pow(rf,4)*b*db*h; |
|
108 |
fx[fi]=fx[fi]+*flx; |
|
109 |
} |
|
110 |
|
|
111 |
void spectre_cn(int nt[nbr],double fx[nbr],double rf,double b,double db, |
|
112 |
double h,double r,double m,double bss,double *flx) |
|
113 |
{ |
|
114 |
double nu_rec,nu_em,qu,v,temp,temp_em,flux_int,m_point,planck,c,k; |
|
115 |
int fi,posfreq; |
|
116 |
|
|
117 |
planck=6.62e-34; |
|
118 |
k=1.38e-23; |
|
119 |
temp=3.e7; |
|
120 |
// m_point=1.e14; |
|
121 |
m_point=10.; |
|
122 |
v=1.-3./r; |
|
123 |
|
|
124 |
qu=1/sqrt(1-3./r)/sqrt(r)*(sqrt(r)-sqrt(6)+sqrt(3)/2*log((sqrt(r)+sqrt(3))/(sqrt(r)-sqrt(3))*(sqrt(6)-sqrt(3))/(sqrt(6)+sqrt(3)))); |
|
125 |
|
|
126 |
temp_em=temp*sqrt(m)*exp(0.25*log(m_point))*exp(-0.75*log(r))* |
|
127 |
exp(-0.125*log(v))*exp(0.25*log(qu)); |
|
128 |
|
|
129 |
flux_int=0; |
|
130 |
*flx=0; |
|
131 |
|
|
132 |
for (fi=1;fi<nbr;fi++) |
|
133 |
{ |
|
134 |
nu_em=bss*fi/nbr; |
|
135 |
nu_rec=nu_em*rf; |
|
136 |
posfreq=1./bss*nu_rec*nbr; |
|
137 |
if ((posfreq>0)&&(posfreq<nbr)) |
|
138 |
{ |
|
139 |
flux_int=2*planck/9e16*pow(nu_em,3)/(exp(planck*nu_em/k/temp_em)-1.)*pow(rf,3)*b*db*h; |
|
140 |
fx[posfreq]+=flux_int; |
|
141 |
*flx+=flux_int; |
|
142 |
nt[posfreq]+=1; |
|
143 |
} |
|
144 |
} |
|
145 |
|
|
146 |
printf("%f %f %f %f\n",b,db,r,*flx); |
|
147 |
} |
|
148 |
|
|
149 |
void impact(double d,double phi,int dim,double r,double b,double tho,double m, |
|
150 |
double **zp,double **fp, |
|
151 |
int nt[200],double fx[200],int q,double db, |
|
152 |
double h,double bss,int raie) |
|
153 |
{ |
|
154 |
double xe,ye; |
|
155 |
int xi,yi; |
|
156 |
double flx,rf; |
|
157 |
xe=d*sin(phi); |
|
158 |
ye=-d*cos(phi); |
|
159 |
|
|
160 |
xi=(int)xe+dim/2; |
|
161 |
yi=(int)ye+dim/2; |
|
162 |
|
|
163 |
rf=decalage_spectral(r,b,phi,tho,m); |
|
164 |
|
|
165 |
if (raie==0) |
|
166 |
{ |
|
167 |
spectre(nt,fx,rf,q,b,db,h,r,m,bss,&flx); |
|
168 |
} |
|
169 |
else |
|
170 |
{ |
|
171 |
spectre_cn(nt,fx,rf,b,db,h,r,m,bss,&flx); |
|
172 |
} |
|
173 |
|
|
174 |
if (zp[xi][yi]==0.) |
|
175 |
{ |
|
176 |
zp[xi][yi]=1./rf; |
|
177 |
} |
|
178 |
|
|
179 |
if (fp[xi][yi]==0.) |
|
180 |
{ |
|
181 |
fp[xi][yi]=flx; |
|
182 |
} |
|
183 |
} |
|
184 |
|
|
185 |
void sauvegarde_pgm(char nom[24],unsigned int **image,int dim) |
|
186 |
{ |
|
187 |
FILE *sortie; |
|
188 |
unsigned long i,j; |
|
189 |
|
|
190 |
sortie=fopen(nom,"w"); |
|
191 |
|
|
192 |
fprintf(sortie,"P5\n"); |
|
193 |
fprintf(sortie,"%i %i\n",dim,dim); |
|
194 |
fprintf(sortie,"255\n"); |
|
195 |
|
|
196 |
for (j=0;j<dim;j++) for (i=0;i<dim;i++) |
|
197 |
{ |
|
198 |
fputc(image[i][j],sortie); |
|
199 |
} |
|
200 |
|
|
201 |
fclose(sortie); |
|
202 |
} |
|
203 |
|
|
204 |
void sauvegarde_dat(char nom[24],double tableau[3][nbr],int raie) |
|
205 |
{ |
|
206 |
FILE *sortie; |
|
207 |
unsigned long i; |
|
208 |
|
|
209 |
sortie=fopen(nom,"w"); |
|
210 |
|
|
211 |
fprintf(sortie,"# Trou Noir entoure d'un Disque d'Accretion\n"); |
|
212 |
|
|
213 |
if (raie==0) |
|
214 |
{ |
|
215 |
fprintf(sortie,"# Colonne 1 : Frequence_Recue/Frequence_Emise\n"); |
|
216 |
} |
|
217 |
else |
|
218 |
{ |
|
219 |
fprintf(sortie,"# Colonne 1 : Fr?quence d'Emission en Hertz\n"); |
|
220 |
} |
|
221 |
|
|
222 |
fprintf(sortie,"# Colonne 2 : Intensite Normalisee\n"); |
|
223 |
fprintf(sortie,"# Colonne 3 : Nombre d'Impacts Normalise\n"); |
|
224 |
|
|
225 |
for (i=1;i<nbr;i++) |
|
226 |
{ |
|
227 |
fprintf(sortie,"%f\t%f\t%f\n",tableau[0][i],tableau[1][i],tableau[2][i]); |
|
228 |
} |
|
229 |
|
|
230 |
fclose(sortie); |
|
231 |
} |
|
232 |
|
|
233 |
int main(int argc,char *argv[]) |
|
234 |
{ |
|
235 |
|
|
236 |
double m,rs,ri,re,tho,ro; |
|
237 |
int q; |
|
238 |
|
|
239 |
double bss,stp; |
|
240 |
int nmx,dim; |
|
241 |
double d,bmx,db,b,h; |
|
242 |
double up,vp,pp; |
|
243 |
double us,vs,ps; |
|
244 |
double rp[2000]; |
|
245 |
double **zp,**fp; |
|
246 |
unsigned int **izp,**ifp; |
|
247 |
double zmx,fmx,zen,fen; |
|
248 |
double flux_tot,impc_tot; |
|
249 |
double fx[nbr]; |
|
250 |
int nt[nbr]; |
|
251 |
double tableau[3][nbr]; |
|
252 |
double phi,thi,thx,phd,php,nr,r; |
|
253 |
int ni,ii,i,imx,j,n,tst,dist,raie,pc,fcl,zcl; |
|
254 |
double nh; |
|
255 |
|
|
256 |
if (argc==2) |
|
257 |
{ |
|
258 |
if (strcmp(argv[1],"-aide")==0) |
|
259 |
{ |
|
260 |
printf("\nSimulation d'un disque d'accretion autour d'un trou noir\n"); |
|
261 |
printf("\nParametres a definir :\n\n"); |
|
262 |
printf(" 1) Dimension de l'Image\n"); |
|
263 |
printf(" 2) Masse relative du trou noir\n"); |
|
264 |
printf(" 3) Dimension du disque exterieur\n"); |
|
265 |
printf(" 4) Distance de l'observateur\n"); |
|
266 |
printf(" 5) Inclinaison par rapport au disque (en degres)\n"); |
|
267 |
printf(" 6) Observation a distance FINIE ou INFINIE\n"); |
|
268 |
printf(" 7) Rayonnement de disque MONOCHROMATIQUE ou CORPS_NOIR\n"); |
|
269 |
printf(" 8) Normalisation des flux INTERNE ou EXTERNE\n"); |
|
270 |
printf(" 9) Normalisation de z INTERNE ou EXTERNE\n"); |
|
271 |
printf(" 10) Impression des images NEGATIVE ou POSITIVE\n"); |
|
272 |
printf(" 11) Nom de l'image des Flux\n"); |
|
273 |
printf(" 12) Nom de l'image des decalages spectraux\n"); |
|
274 |
printf(" 13) Nom du fichier contenant le spectre\n"); |
|
275 |
printf(" 14) Valeur de normalisation des flux\n"); |
|
276 |
printf(" 15) Valeur de normalisation des decalages spectraux\n"); |
|
277 |
printf("\nSi aucun parametre defini, parametres par defaut :\n\n"); |
|
278 |
printf(" 1) Dimension de l'image : 256 pixels de cote\n"); |
|
279 |
printf(" 2) Masse relative du trou noir : 1\n"); |
|
280 |
printf(" 3) Dimension du disque exterieur : 12 \n"); |
|
281 |
printf(" 4) Distance de l'observateur : 100 \n"); |
|
282 |
printf(" 5) Inclinaison par rapport au disque (en degres) : 10\n"); |
|
283 |
printf(" 6) Observation a distance FINIE\n"); |
|
284 |
printf(" 7) Rayonnement de disque MONOCHROMATIQUE\n"); |
|
285 |
printf(" 8) Normalisation des flux INTERNE\n"); |
|
286 |
printf(" 9) Normalisation des z INTERNE\n"); |
|
287 |
printf(" 10) Impression des images NEGATIVE ou POSITIVE\n"); |
|
288 |
printf(" 11) Nom de l'image des flux : flux.pgm\n"); |
|
289 |
printf(" 12) Nom de l'image des z : z.pgm\n"); |
|
290 |
printf(" 13) Nom du fichier contenant le spectre : spectre.dat\n"); |
|
291 |
printf(" 14) <non definie>\n"); |
|
292 |
printf(" 15) <non definie>\n"); |
|
293 |
} |
|
294 |
} |
|
295 |
|
|
296 |
if ((argc==14)||(argc==16)) |
|
297 |
{ |
|
298 |
printf("# Utilisation les valeurs definies par l'utilisateur\n"); |
|
299 |
|
|
300 |
dim=atoi(argv[1]); |
|
301 |
m=atof(argv[2]); |
|
302 |
re=atof(argv[3]); |
|
303 |
ro=atof(argv[4]); |
|
304 |
tho=PI/180.*(90-atof(argv[5])); |
|
305 |
|
|
306 |
rs=2.*m; |
|
307 |
ri=3.*rs; |
|
308 |
q=-2; |
|
309 |
|
|
310 |
if (strcmp(argv[6],"FINIE")==0) |
|
311 |
{ |
|
312 |
dist=0; |
|
313 |
} |
|
314 |
else |
|
315 |
{ |
|
316 |
dist=1; |
|
317 |
} |
|
318 |
|
|
319 |
if (strcmp(argv[7],"MONOCHROMATIQUE")==0) |
|
320 |
{ |
|
321 |
raie=0; |
|
322 |
} |
|
323 |
else |
|
324 |
{ |
|
325 |
raie=1; |
|
326 |
} |
|
327 |
|
|
328 |
if (strcmp(argv[8],"EXTERNE")==0) |
|
329 |
{ |
|
330 |
fen=atof(argv[14]); |
|
331 |
} |
|
332 |
|
|
333 |
if (strcmp(argv[9],"EXTERNE")==0) |
|
334 |
{ |
|
335 |
zen=atof(argv[15]); |
|
336 |
} |
|
337 |
|
|
338 |
} |
|
339 |
else |
|
340 |
{ |
|
341 |
printf("# Utilisation les valeurs par defaut\n"); |
|
342 |
|
|
343 |
dim=256; |
|
344 |
m=1.; |
|
345 |
rs=2.*m; |
|
346 |
ri=3.*rs; |
|
347 |
re=12.; |
|
348 |
ro=100.; |
|
349 |
tho=PI/180.*80; |
|
350 |
q=-2; |
|
351 |
dist=0; |
|
352 |
raie=0; |
|
353 |
} |
|
354 |
|
|
355 |
printf("# Dimension de l'image : %i\n",dim); |
|
356 |
printf("# Masse : %f\n",m); |
|
357 |
printf("# Rayon singularite : %f\n",rs); |
|
358 |
printf("# Rayon interne : %f\n",ri); |
|
359 |
printf("# Rayon externe : %f\n",re); |
|
360 |
printf("# Distance de l'observateur : %f\n",ro); |
|
361 |
printf("# Inclinaison a la normale en radian : %f\n",tho); |
|
362 |
|
|
363 |
for (i=0;i<nbr;i++) |
|
364 |
{ |
|
365 |
fx[i]=0.; |
|
366 |
nt[i]=0; |
|
367 |
} |
|
368 |
|
|
369 |
zp=(double**)calloc(dim,sizeof(double*)); |
|
370 |
zp[0]=(double*)calloc(dim*dim,sizeof(double)); |
|
371 |
|
|
372 |
fp=(double**)calloc(dim,sizeof(double*)); |
|
373 |
fp[0]=(double*)calloc(dim*dim,sizeof(double)); |
|
374 |
|
|
375 |
izp=(unsigned int**)calloc(dim,sizeof(unsigned int*)); |
|
376 |
izp[0]=(unsigned int*)calloc(dim*dim,sizeof(unsigned int)); |
|
377 |
|
|
378 |
ifp=(unsigned int**)calloc(dim,sizeof(unsigned int*)); |
|
379 |
ifp[0]=(unsigned int*)calloc(dim*dim,sizeof(unsigned int)); |
|
380 |
|
|
381 |
for (i=1;i<dim;i++) |
|
382 |
{ |
|
383 |
zp[i]=zp[i-1]+dim; |
|
384 |
fp[i]=fp[i-1]+dim; |
|
385 |
izp[i]=izp[i-1]+dim; |
|
386 |
ifp[i]=ifp[i-1]+dim; |
|
387 |
} |
|
388 |
|
|
389 |
nmx=dim; |
|
390 |
stp=dim/(2.*nmx); |
|
391 |
bmx=1.25*re; |
|
392 |
b=0.; |
|
393 |
thx=asin(bmx/ro); |
|
394 |
pc=0; |
|
395 |
|
|
396 |
if (raie==0) |
|
397 |
{ |
|
398 |
bss=2; |
|
399 |
} |
|
400 |
else |
|
401 |
{ |
|
402 |
bss=3e21; |
|
403 |
} |
|
404 |
|
|
405 |
for (n=1;n<=nmx;n++) |
|
406 |
{ |
|
407 |
h=PI/500.; |
|
408 |
d=stp*n; |
|
409 |
|
|
410 |
if (dist==1) |
|
411 |
{ |
|
412 |
db=bmx/(double)nmx; |
|
413 |
b=db*(double)n; |
|
414 |
up=0.; |
|
415 |
vp=1.; |
|
416 |
} |
|
417 |
else |
|
418 |
{ |
|
419 |
thi=thx/(double)nmx*(double)n; |
|
420 |
db=ro*sin(thi)-b; |
|
421 |
b=ro*sin(thi); |
|
422 |
up=sin(thi); |
|
423 |
vp=cos(thi); |
|
424 |
} |
|
425 |
|
|
426 |
pp=0.; |
|
427 |
nh=1; |
|
428 |
|
|
429 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b); |
|
430 |
|
|
431 |
rp[(int)nh]=fabs(b/us); |
|
432 |
|
|
433 |
do |
|
434 |
{ |
|
435 |
nh++; |
|
436 |
pp=ps; |
|
437 |
up=us; |
|
438 |
vp=vs; |
|
439 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b); |
|
440 |
|
|
441 |
rp[(int)nh]=b/us; |
|
442 |
|
|
443 |
} while ((rp[(int)nh]>=rs)&&(rp[(int)nh]<=rp[1])); |
|
444 |
|
|
445 |
for (i=nh+1;i<2000;i++) |
|
446 |
{ |
|
447 |
rp[i]=0.; |
|
448 |
} |
|
449 |
|
|
450 |
imx=(int)(8*d); |
|
451 |
|
|
452 |
for (i=0;i<=imx;i++) |
|
453 |
{ |
|
454 |
phi=2.*PI/(double)imx*(double)i; |
|
455 |
phd=atanp(cos(phi)*sin(tho),cos(tho)); |
|
456 |
phd=fmod(phd,PI); |
|
457 |
ii=0; |
|
458 |
tst=0; |
|
459 |
|
|
460 |
do |
|
461 |
{ |
|
462 |
php=phd+(double)ii*PI; |
|
463 |
nr=php/h; |
|
464 |
ni=(int)nr; |
|
465 |
|
|
466 |
if ((double)ni<nh) |
|
467 |
{ |
|
468 |
r=(rp[ni+1]-rp[ni])*(nr-ni*1.)+rp[ni]; |
|
469 |
} |
|
470 |
else |
|
471 |
{ |
|
472 |
r=rp[ni]; |
|
473 |
} |
|
474 |
|
|
475 |
if ((r<=re)&&(r>=ri)) |
|
476 |
{ |
|
477 |
tst=1; |
|
478 |
impact(d,phi,dim,r,b,tho,m,zp,fp,nt,fx,q,db,h,bss,raie); |
|
479 |
} |
|
480 |
|
|
481 |
ii++; |
|
482 |
} while ((ii<=2)&&(tst==0)); |
|
483 |
} |
|
484 |
} |
|
485 |
|
|
486 |
fmx=fp[0][0]; |
|
487 |
zmx=zp[0][0]; |
|
488 |
|
|
489 |
for (i=0;i<dim;i++) for (j=0;j<dim;j++) |
|
490 |
{ |
|
491 |
if (fmx<fp[i][j]) |
|
492 |
{ |
|
493 |
fmx=fp[i][j]; |
|
494 |
} |
|
495 |
|
|
496 |
if (zmx<zp[i][j]) |
|
497 |
{ |
|
498 |
zmx=zp[i][j]; |
|
499 |
} |
|
500 |
} |
|
501 |
|
|
502 |
printf("\nLe flux maximal detecte est de %f",fmx); |
|
503 |
printf("\nLe decalage spectral maximal detecte est de %f\n\n",zmx); |
|
504 |
|
|
505 |
if (strcmp(argv[8],"EXTERNE")==0) |
|
506 |
{ |
|
507 |
fmx=fen; |
|
508 |
} |
|
509 |
|
|
510 |
if (strcmp(argv[9],"EXTERNE")==0) |
|
511 |
{ |
|
512 |
zmx=zen; |
|
513 |
} |
|
514 |
|
|
515 |
for (i=0;i<dim;i++) for (j=0;j<dim;j++) |
|
516 |
{ |
|
517 |
zcl=(int)(255/zmx*zp[i][dim-1-j]); |
|
518 |
fcl=(int)(255/fmx*fp[i][dim-1-j]); |
|
519 |
|
|
520 |
if (strcmp(argv[8],"NEGATIVE")==0) |
|
521 |
{ |
|
522 |
if (zcl>255) |
|
523 |
{ |
|
524 |
izp[i][j]=0; |
|
525 |
} |
|
526 |
else |
|
527 |
{ |
|
528 |
izp[i][j]=255-zcl; |
|
529 |
} |
|
530 |
|
|
531 |
if (fcl>255) |
|
532 |
{ |
|
533 |
ifp[i][j]=0; |
|
534 |
} |
|
535 |
else |
|
536 |
{ |
|
537 |
ifp[i][j]=255-fcl; |
|
538 |
} |
|
539 |
|
|
540 |
} |
|
541 |
else |
|
542 |
{ |
|
543 |
if (zcl>255) |
|
544 |
{ |
|
545 |
izp[i][j]=255; |
|
546 |
} |
|
547 |
else |
|
548 |
{ |
|
549 |
izp[i][j]=zcl; |
|
550 |
} |
|
551 |
|
|
552 |
if (fcl>255) |
|
553 |
{ |
|
554 |
ifp[i][j]=255; |
|
555 |
} |
|
556 |
else |
|
557 |
{ |
|
558 |
ifp[i][j]=fcl; |
|
559 |
} |
|
560 |
|
|
561 |
} |
|
562 |
|
|
563 |
} |
|
564 |
|
|
565 |
flux_tot=0; |
|
566 |
impc_tot=0; |
|
567 |
|
|
568 |
for (i=1;i<nbr;i++) |
|
569 |
{ |
|
570 |
flux_tot+=fx[i]; |
|
571 |
impc_tot+=nt[i]; |
|
572 |
} |
|
573 |
|
|
574 |
for (i=1;i<nbr;i++) |
|
575 |
{ |
|
576 |
tableau[0][i]=bss*i/nbr; |
|
577 |
tableau[1][i]=fx[i]/flux_tot; |
|
578 |
tableau[2][i]=(double)nt[i]/(double)impc_tot; |
|
579 |
} |
|
580 |
|
|
581 |
if ((argc==14)||(argc==16)) |
|
582 |
{ |
|
583 |
sauvegarde_pgm(argv[11],ifp,dim); |
|
584 |
sauvegarde_pgm(argv[12],izp,dim); |
|
585 |
sauvegarde_dat(argv[13],tableau,raie); |
|
586 |
} |
|
587 |
else |
|
588 |
{ |
|
589 |
sauvegarde_pgm("z.pgm",izp,dim); |
|
590 |
sauvegarde_pgm("flux.pgm",ifp,dim); |
|
591 |
sauvegarde_dat("spectre.dat",tableau,raie); |
|
592 |
} |
|
593 |
|
|
594 |
free(zp[0]); |
|
595 |
free(zp); |
|
596 |
free(fp[0]); |
|
597 |
free(fp); |
|
598 |
|
|
599 |
free(izp[0]); |
|
600 |
free(izp); |
|
601 |
free(ifp[0]); |
|
602 |
free(ifp); |
|
603 |
|
|
604 |
} |
|
605 |
|
|
606 |
|
Formats disponibles : Unified diff