root / TrouNoir / trou_noir_MyFloat.c @ 206
Historique | Voir | Annoter | Télécharger (10,86 ko)
1 |
/*
|
---|---|
2 |
Programme original realise en Fortran 77 en mars 1994
|
3 |
pour les Travaux Pratiques de Modelisation Numerique
|
4 |
DEA d'astrophysique et techniques spatiales de Meudon
|
5 |
|
6 |
par Herve Aussel et Emmanuel Quemener
|
7 |
|
8 |
Conversion en C par Emmanuel Quemener en aout 1997
|
9 |
Modification par Emmanuel Quemener en aout 2019
|
10 |
|
11 |
Remerciements a :
|
12 |
|
13 |
- Herve Aussel pour sa procedure sur le spectre de corps noir
|
14 |
- Didier Pelat pour l'aide lors de ce travail
|
15 |
- Jean-Pierre Luminet pour son article de 1979
|
16 |
- Le Numerical Recipies pour ses recettes de calcul
|
17 |
- Luc Blanchet pour sa disponibilite lors de mes interrogations en RG
|
18 |
|
19 |
Compilation sous gcc ( Compilateur GNU sous Linux ) :
|
20 |
|
21 |
gcc -O2 -o trou_noir trou_noir.c -lm
|
22 |
*/
|
23 |
|
24 |
#include <stdio.h> |
25 |
#include <math.h> |
26 |
#include <stdlib.h> |
27 |
#include <string.h> |
28 |
#include <sys/time.h> |
29 |
|
30 |
#define nbr 256 /* Nombre de colonnes du spectre */ |
31 |
|
32 |
#define PI 3.14159265359 |
33 |
|
34 |
#define TRACKPOINTS 2048 |
35 |
|
36 |
#if TYPE == FP32
|
37 |
#define MYFLOAT float |
38 |
#else
|
39 |
#define MYFLOAT double |
40 |
#endif
|
41 |
|
42 |
MYFLOAT atanp(MYFLOAT x,MYFLOAT y) |
43 |
{ |
44 |
MYFLOAT angle; |
45 |
|
46 |
angle=atan2(y,x); |
47 |
|
48 |
if (angle<0) |
49 |
{ |
50 |
angle+=2*PI;
|
51 |
} |
52 |
|
53 |
return angle;
|
54 |
} |
55 |
|
56 |
|
57 |
MYFLOAT f(MYFLOAT v) |
58 |
{ |
59 |
return v;
|
60 |
} |
61 |
|
62 |
MYFLOAT g(MYFLOAT u,MYFLOAT m,MYFLOAT b) |
63 |
{ |
64 |
return (3.*m/b*pow(u,2)-u); |
65 |
} |
66 |
|
67 |
|
68 |
void calcul(MYFLOAT *us,MYFLOAT *vs,MYFLOAT up,MYFLOAT vp,
|
69 |
MYFLOAT h,MYFLOAT m,MYFLOAT b) |
70 |
{ |
71 |
MYFLOAT c[4],d[4]; |
72 |
|
73 |
c[0]=h*f(vp);
|
74 |
c[1]=h*f(vp+c[0]/2.); |
75 |
c[2]=h*f(vp+c[1]/2.); |
76 |
c[3]=h*f(vp+c[2]); |
77 |
d[0]=h*g(up,m,b);
|
78 |
d[1]=h*g(up+d[0]/2.,m,b); |
79 |
d[2]=h*g(up+d[1]/2.,m,b); |
80 |
d[3]=h*g(up+d[2],m,b); |
81 |
|
82 |
*us=up+(c[0]+2.*c[1]+2.*c[2]+c[3])/6.; |
83 |
*vs=vp+(d[0]+2.*d[1]+2.*d[2]+d[3])/6.; |
84 |
} |
85 |
|
86 |
void rungekutta(MYFLOAT *ps,MYFLOAT *us,MYFLOAT *vs,
|
87 |
MYFLOAT pp,MYFLOAT up,MYFLOAT vp, |
88 |
MYFLOAT h,MYFLOAT m,MYFLOAT b) |
89 |
{ |
90 |
calcul(us,vs,up,vp,h,m,b); |
91 |
*ps=pp+h; |
92 |
} |
93 |
|
94 |
|
95 |
MYFLOAT decalage_spectral(MYFLOAT r,MYFLOAT b,MYFLOAT phi, |
96 |
MYFLOAT tho,MYFLOAT m) |
97 |
{ |
98 |
return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi))); |
99 |
} |
100 |
|
101 |
MYFLOAT spectre(MYFLOAT rf,MYFLOAT q,MYFLOAT b,MYFLOAT db, |
102 |
MYFLOAT h,MYFLOAT r,MYFLOAT m,MYFLOAT bss) |
103 |
{ |
104 |
MYFLOAT flx; |
105 |
int fi;
|
106 |
|
107 |
fi=(int)(rf*nbr/bss);
|
108 |
flx=exp(q*log(r/m))*pow(rf,4)*b*db*h;
|
109 |
return(flx);
|
110 |
} |
111 |
|
112 |
MYFLOAT spectre_cn(MYFLOAT rf,MYFLOAT b,MYFLOAT db, |
113 |
MYFLOAT h,MYFLOAT r,MYFLOAT m,MYFLOAT bss) |
114 |
{ |
115 |
|
116 |
MYFLOAT flx; |
117 |
MYFLOAT nu_rec,nu_em,qu,temp_em,flux_int; |
118 |
int fi,posfreq;
|
119 |
|
120 |
#define planck 6.62e-34 |
121 |
#define k 1.38e-23 |
122 |
#define c2 9.e16 |
123 |
#define temp 3.e7 |
124 |
#define m_point 1. |
125 |
|
126 |
MYFLOAT v=1.-3./r; |
127 |
|
128 |
qu=1./sqrt((1.-3./r)*r)*(sqrt(r)-sqrt(6.)+sqrt(3.)/2.*log((sqrt(r)+sqrt(3.))/(sqrt(r)-sqrt(3.))* 0.17157287525380988 )); |
129 |
|
130 |
temp_em=temp*sqrt(m)*exp(0.25*log(m_point)-0.75*log(r)-0.125*log(v)+0.25*log(fabs(qu))); |
131 |
|
132 |
flux_int=0;
|
133 |
flx=0;
|
134 |
|
135 |
for (fi=0;fi<nbr;fi++) |
136 |
{ |
137 |
nu_em=bss*fi/(MYFLOAT)nbr; |
138 |
nu_rec=nu_em*rf; |
139 |
posfreq=(int)(nu_rec*(MYFLOAT)nbr/bss);
|
140 |
if ((posfreq>0)&&(posfreq<nbr)) |
141 |
{ |
142 |
flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.); |
143 |
flux_int*=pow(rf,3)*b*db*h;
|
144 |
flx+=flux_int; |
145 |
} |
146 |
} |
147 |
|
148 |
return((MYFLOAT)flx);
|
149 |
} |
150 |
|
151 |
void impact(MYFLOAT d,MYFLOAT phi,int dim,MYFLOAT r,MYFLOAT b,MYFLOAT tho,MYFLOAT m, |
152 |
MYFLOAT **zp,MYFLOAT **fp, |
153 |
MYFLOAT q,MYFLOAT db, |
154 |
MYFLOAT h,MYFLOAT bss,int raie)
|
155 |
{ |
156 |
MYFLOAT xe,ye; |
157 |
int xi,yi;
|
158 |
MYFLOAT flx,rf; |
159 |
xe=d*sin(phi); |
160 |
ye=-d*cos(phi); |
161 |
|
162 |
xi=(int)xe+dim/2; |
163 |
yi=(int)ye+dim/2; |
164 |
|
165 |
rf=decalage_spectral(r,b,phi,tho,m); |
166 |
|
167 |
if (raie==0) |
168 |
{ |
169 |
flx=spectre_cn(rf,b,db,h,r,m,bss); |
170 |
} |
171 |
else
|
172 |
{ |
173 |
flx=spectre(rf,q,b,db,h,r,m,bss); |
174 |
} |
175 |
|
176 |
if (zp[xi][yi]==0.) |
177 |
{ |
178 |
zp[xi][yi]=1./rf;
|
179 |
} |
180 |
|
181 |
if (fp[xi][yi]==0.) |
182 |
{ |
183 |
fp[xi][yi]=flx; |
184 |
} |
185 |
} |
186 |
|
187 |
void sauvegarde_pgm(char nom[24],unsigned int **image,int dim) |
188 |
{ |
189 |
FILE *sortie; |
190 |
unsigned long i,j; |
191 |
|
192 |
sortie=fopen(nom,"w");
|
193 |
|
194 |
fprintf(sortie,"P5\n");
|
195 |
fprintf(sortie,"%i %i\n",dim,dim);
|
196 |
fprintf(sortie,"255\n");
|
197 |
|
198 |
for (j=0;j<dim;j++) for (i=0;i<dim;i++) |
199 |
{ |
200 |
fputc(image[i][j],sortie); |
201 |
} |
202 |
|
203 |
fclose(sortie); |
204 |
} |
205 |
|
206 |
int main(int argc,char *argv[]) |
207 |
{ |
208 |
|
209 |
MYFLOAT m,rs,ri,re,tho,ro; |
210 |
int q;
|
211 |
|
212 |
MYFLOAT bss,stp; |
213 |
int nmx,dim;
|
214 |
MYFLOAT d,bmx,db,b,h; |
215 |
MYFLOAT up,vp,pp; |
216 |
MYFLOAT us,vs,ps; |
217 |
MYFLOAT rp[TRACKPOINTS]; |
218 |
MYFLOAT **zp,**fp; |
219 |
unsigned int **izp,**ifp; |
220 |
MYFLOAT zmx,fmx,zen,fen; |
221 |
MYFLOAT flux_tot,impc_tot; |
222 |
MYFLOAT phi,thi,thx,phd,php,nr,r; |
223 |
int ni,ii,i,imx,j,n,tst,dist,raie,pc,fcl,zcl;
|
224 |
MYFLOAT nh; |
225 |
|
226 |
if (argc==2) |
227 |
{ |
228 |
if (strcmp(argv[1],"-aide")==0) |
229 |
{ |
230 |
printf("\nSimulation d'un disque d'accretion autour d'un trou noir\n");
|
231 |
printf("\nParametres a definir :\n\n");
|
232 |
printf(" 1) Dimension de l'Image\n");
|
233 |
printf(" 2) Masse relative du trou noir\n");
|
234 |
printf(" 3) Dimension du disque exterieur\n");
|
235 |
printf(" 4) Distance de l'observateur\n");
|
236 |
printf(" 5) Inclinaison par rapport au disque (en degres)\n");
|
237 |
printf(" 6) Observation a distance FINIE ou INFINIE\n");
|
238 |
printf(" 7) Rayonnement de disque MONOCHROMATIQUE ou CORPS_NOIR\n");
|
239 |
printf(" 8) Normalisation des flux INTERNE ou EXTERNE\n");
|
240 |
printf(" 9) Normalisation de z INTERNE ou EXTERNE\n");
|
241 |
printf(" 10) Impression des images NEGATIVE ou POSITIVE\n");
|
242 |
printf(" 11) Nom de l'image des Flux\n");
|
243 |
printf(" 12) Nom de l'image des decalages spectraux\n");
|
244 |
printf(" 13) Valeur de normalisation des flux\n");
|
245 |
printf(" 14) Valeur de normalisation des decalages spectraux\n");
|
246 |
printf("\nSi aucun parametre defini, parametres par defaut :\n\n");
|
247 |
printf(" 1) Dimension de l'image : 1024 pixels de cote\n");
|
248 |
printf(" 2) Masse relative du trou noir : 1\n");
|
249 |
printf(" 3) Dimension du disque exterieur : 12 \n");
|
250 |
printf(" 4) Distance de l'observateur : 100 \n");
|
251 |
printf(" 5) Inclinaison par rapport au disque (en degres) : 10\n");
|
252 |
printf(" 6) Observation a distance FINIE\n");
|
253 |
printf(" 7) Rayonnement de disque CORPS_NOIR\n");
|
254 |
printf(" 8) Normalisation des flux INTERNE\n");
|
255 |
printf(" 9) Normalisation des z INTERNE\n");
|
256 |
printf(" 10) Impression des images NEGATIVE ou POSITIVE\n");
|
257 |
printf(" 11) Nom de l'image des flux : flux.pgm\n");
|
258 |
printf(" 12) Nom de l'image des z : z.pgm\n");
|
259 |
printf(" 13) <non definie>\n");
|
260 |
printf(" 14) <non definie>\n");
|
261 |
} |
262 |
} |
263 |
|
264 |
if ((argc==13)||(argc==15)) |
265 |
{ |
266 |
printf("# Utilisation les valeurs definies par l'utilisateur\n");
|
267 |
|
268 |
dim=atoi(argv[1]);
|
269 |
m=atof(argv[2]);
|
270 |
re=atof(argv[3]);
|
271 |
ro=atof(argv[4]);
|
272 |
tho=PI/180.*(90-atof(argv[5])); |
273 |
|
274 |
rs=2.*m;
|
275 |
ri=3.*rs;
|
276 |
|
277 |
if (strcmp(argv[6],"FINIE")==0) |
278 |
{ |
279 |
dist=0;
|
280 |
} |
281 |
else
|
282 |
{ |
283 |
dist=1;
|
284 |
} |
285 |
|
286 |
if (strcmp(argv[7],"CORPS_NOIR")==0) |
287 |
{ |
288 |
raie=0;
|
289 |
} |
290 |
else
|
291 |
{ |
292 |
raie=1;
|
293 |
} |
294 |
|
295 |
if (strcmp(argv[8],"EXTERNE")==0) |
296 |
{ |
297 |
fen=atof(argv[14]);
|
298 |
} |
299 |
|
300 |
if (strcmp(argv[9],"EXTERNE")==0) |
301 |
{ |
302 |
zen=atof(argv[15]);
|
303 |
} |
304 |
|
305 |
} |
306 |
else
|
307 |
{ |
308 |
printf("# Utilisation les valeurs par defaut\n");
|
309 |
|
310 |
dim=1024;
|
311 |
m=1.;
|
312 |
rs=2.*m;
|
313 |
ri=3.*rs;
|
314 |
re=12.; |
315 |
ro=100.; |
316 |
tho=PI/180.*80; |
317 |
// Distance finie
|
318 |
dist=0;
|
319 |
// Corps noir
|
320 |
raie=0;
|
321 |
} |
322 |
|
323 |
if (raie==1) |
324 |
{ |
325 |
bss=2.;
|
326 |
q=-2;
|
327 |
} |
328 |
else
|
329 |
{ |
330 |
bss=1e19;
|
331 |
q=-0.75; |
332 |
} |
333 |
|
334 |
printf("# Dimension de l'image : %i\n",dim);
|
335 |
printf("# Masse : %f\n",m);
|
336 |
printf("# Rayon singularite : %f\n",rs);
|
337 |
printf("# Rayon interne : %f\n",ri);
|
338 |
printf("# Rayon externe : %f\n",re);
|
339 |
printf("# Distance de l'observateur : %f\n",ro);
|
340 |
printf("# Inclinaison a la normale en radian : %f\n",tho);
|
341 |
|
342 |
zp=(MYFLOAT**)calloc(dim,sizeof(MYFLOAT*));
|
343 |
zp[0]=(MYFLOAT*)calloc(dim*dim,sizeof(MYFLOAT)); |
344 |
|
345 |
fp=(MYFLOAT**)calloc(dim,sizeof(MYFLOAT*));
|
346 |
fp[0]=(MYFLOAT*)calloc(dim*dim,sizeof(MYFLOAT)); |
347 |
|
348 |
izp=(unsigned int**)calloc(dim,sizeof(unsigned int*)); |
349 |
izp[0]=(unsigned int*)calloc(dim*dim,sizeof(unsigned int)); |
350 |
|
351 |
ifp=(unsigned int**)calloc(dim,sizeof(unsigned int*)); |
352 |
ifp[0]=(unsigned int*)calloc(dim*dim,sizeof(unsigned int)); |
353 |
|
354 |
for (i=1;i<dim;i++) |
355 |
{ |
356 |
zp[i]=zp[i-1]+dim;
|
357 |
fp[i]=fp[i-1]+dim;
|
358 |
izp[i]=izp[i-1]+dim;
|
359 |
ifp[i]=ifp[i-1]+dim;
|
360 |
} |
361 |
|
362 |
nmx=dim; |
363 |
stp=dim/(2.*nmx);
|
364 |
bmx=1.25*re; |
365 |
b=0.;
|
366 |
thx=asin(bmx/ro); |
367 |
pc=0;
|
368 |
|
369 |
struct timeval tv1,tv2;
|
370 |
struct timezone tz;
|
371 |
|
372 |
// Set start timer
|
373 |
gettimeofday(&tv1, &tz); |
374 |
|
375 |
for (n=1;n<=nmx;n++) |
376 |
{ |
377 |
h=4.*PI/(MYFLOAT)TRACKPOINTS;
|
378 |
d=stp*n; |
379 |
|
380 |
if (dist==1) |
381 |
{ |
382 |
db=bmx/(MYFLOAT)nmx; |
383 |
b=db*(MYFLOAT)n; |
384 |
up=0.;
|
385 |
vp=1.;
|
386 |
} |
387 |
else
|
388 |
{ |
389 |
thi=thx/(MYFLOAT)nmx*(MYFLOAT)n; |
390 |
db=ro*sin(thi)-b; |
391 |
b=ro*sin(thi); |
392 |
up=sin(thi); |
393 |
vp=cos(thi); |
394 |
} |
395 |
|
396 |
pp=0.;
|
397 |
nh=1;
|
398 |
|
399 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b); |
400 |
|
401 |
rp[(int)nh]=fabs(b/us);
|
402 |
|
403 |
do
|
404 |
{ |
405 |
nh++; |
406 |
pp=ps; |
407 |
up=us; |
408 |
vp=vs; |
409 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b); |
410 |
|
411 |
rp[(int)nh]=b/us;
|
412 |
|
413 |
} while ((rp[(int)nh]>=rs)&&(rp[(int)nh]<=rp[1])); |
414 |
|
415 |
for (i=nh+1;i<TRACKPOINTS;i++) |
416 |
{ |
417 |
rp[i]=0.;
|
418 |
} |
419 |
|
420 |
imx=(int)(8*d); |
421 |
|
422 |
for (i=0;i<=imx;i++) |
423 |
{ |
424 |
phi=2.*PI/(MYFLOAT)imx*(MYFLOAT)i;
|
425 |
phd=atanp(cos(phi)*sin(tho),cos(tho)); |
426 |
phd=fmod(phd,PI); |
427 |
ii=0;
|
428 |
tst=0;
|
429 |
|
430 |
do
|
431 |
{ |
432 |
php=phd+(MYFLOAT)ii*PI; |
433 |
nr=php/h; |
434 |
ni=(int)nr;
|
435 |
|
436 |
if ((MYFLOAT)ni<nh)
|
437 |
{ |
438 |
r=(rp[ni+1]-rp[ni])*(nr-ni*1.)+rp[ni]; |
439 |
} |
440 |
else
|
441 |
{ |
442 |
r=rp[ni]; |
443 |
} |
444 |
|
445 |
if ((r<=re)&&(r>=ri))
|
446 |
{ |
447 |
tst=1;
|
448 |
impact(d,phi,dim,r,b,tho,m,zp,fp,q,db,h,bss,raie); |
449 |
} |
450 |
|
451 |
ii++; |
452 |
} while ((ii<=2)&&(tst==0)); |
453 |
} |
454 |
} |
455 |
|
456 |
// Set stop timer
|
457 |
gettimeofday(&tv2, &tz); |
458 |
|
459 |
double elapsed=(double)((tv2.tv_sec-tv1.tv_sec) * 1000000L + |
460 |
(tv2.tv_usec-tv1.tv_usec))/1000000;
|
461 |
|
462 |
fmx=fp[0][0]; |
463 |
zmx=zp[0][0]; |
464 |
|
465 |
for (i=0;i<dim;i++) for (j=0;j<dim;j++) |
466 |
{ |
467 |
if (fmx<fp[i][j])
|
468 |
{ |
469 |
fmx=fp[i][j]; |
470 |
} |
471 |
|
472 |
if (zmx<zp[i][j])
|
473 |
{ |
474 |
zmx=zp[i][j]; |
475 |
} |
476 |
} |
477 |
|
478 |
printf("\nElapsed Time : %lf",(double)elapsed); |
479 |
printf("\nFlux max : %f",fmx);
|
480 |
printf("\nZ max : %f\n\n",zmx);
|
481 |
|
482 |
if (strcmp(argv[8],"EXTERNE")==0) |
483 |
{ |
484 |
fmx=fen; |
485 |
} |
486 |
|
487 |
if (strcmp(argv[9],"EXTERNE")==0) |
488 |
{ |
489 |
zmx=zen; |
490 |
} |
491 |
|
492 |
for (i=0;i<dim;i++) for (j=0;j<dim;j++) |
493 |
{ |
494 |
zcl=(int)(255/zmx*zp[i][dim-1-j]); |
495 |
fcl=(int)(255/fmx*fp[i][dim-1-j]); |
496 |
|
497 |
if (strcmp(argv[8],"NEGATIVE")==0) |
498 |
{ |
499 |
if (zcl>255) |
500 |
{ |
501 |
izp[i][j]=0;
|
502 |
} |
503 |
else
|
504 |
{ |
505 |
izp[i][j]=255-zcl;
|
506 |
} |
507 |
|
508 |
if (fcl>255) |
509 |
{ |
510 |
ifp[i][j]=0;
|
511 |
} |
512 |
else
|
513 |
{ |
514 |
ifp[i][j]=255-fcl;
|
515 |
} |
516 |
|
517 |
} |
518 |
else
|
519 |
{ |
520 |
if (zcl>255) |
521 |
{ |
522 |
izp[i][j]=255;
|
523 |
} |
524 |
else
|
525 |
{ |
526 |
izp[i][j]=zcl; |
527 |
} |
528 |
|
529 |
if (fcl>255) |
530 |
{ |
531 |
ifp[i][j]=255;
|
532 |
} |
533 |
else
|
534 |
{ |
535 |
ifp[i][j]=fcl; |
536 |
} |
537 |
|
538 |
} |
539 |
|
540 |
} |
541 |
|
542 |
if ((argc==14)||(argc==16)) |
543 |
{ |
544 |
sauvegarde_pgm(argv[11],ifp,dim);
|
545 |
sauvegarde_pgm(argv[12],izp,dim);
|
546 |
} |
547 |
else
|
548 |
{ |
549 |
sauvegarde_pgm("z.pgm",izp,dim);
|
550 |
sauvegarde_pgm("flux.pgm",ifp,dim);
|
551 |
} |
552 |
|
553 |
free(zp[0]);
|
554 |
free(zp); |
555 |
free(fp[0]);
|
556 |
free(fp); |
557 |
|
558 |
free(izp[0]);
|
559 |
free(izp); |
560 |
free(ifp[0]);
|
561 |
free(ifp); |
562 |
|
563 |
} |
564 |
|
565 |
|