root / TrouNoir / TrouNoir.py @ 201
Historique | Voir | Annoter | Télécharger (12,35 ko)
1 | 199 | equemene | #!/usr/bin/env python
|
---|---|---|---|
2 | 199 | equemene | #
|
3 | 199 | equemene | # TrouNoir model using PyOpenCL
|
4 | 199 | equemene | #
|
5 | 199 | equemene | # CC BY-NC-SA 2011 : <emmanuel.quemener@ens-lyon.fr>
|
6 | 199 | equemene | #
|
7 | 199 | equemene | # Thanks to Andreas Klockner for PyOpenCL:
|
8 | 199 | equemene | # http://mathema.tician.de/software/pyopencl
|
9 | 199 | equemene | #
|
10 | 199 | equemene | # Interesting links:
|
11 | 199 | equemene | # http://viennacl.sourceforge.net/viennacl-documentation.html
|
12 | 199 | equemene | # http://enja.org/2011/02/22/adventures-in-pyopencl-part-1-getting-started-with-python/
|
13 | 199 | equemene | |
14 | 199 | equemene | import pyopencl as cl |
15 | 199 | equemene | import numpy |
16 | 199 | equemene | from PIL import Image |
17 | 199 | equemene | import time,string |
18 | 199 | equemene | from numpy.random import randint as nprnd |
19 | 199 | equemene | import sys |
20 | 199 | equemene | import getopt |
21 | 199 | equemene | import matplotlib.pyplot as plt |
22 | 199 | equemene | |
23 | 199 | equemene | KERNEL_CODE=string.Template("""
|
24 | 199 | equemene |
|
25 | 199 | equemene | #define PI (float)3.14159265359
|
26 | 199 | equemene | #define nbr 200
|
27 | 199 | equemene |
|
28 | 199 | equemene | float atanp(float x,float y)
|
29 | 199 | equemene | {
|
30 | 199 | equemene | float angle;
|
31 | 199 | equemene |
|
32 | 199 | equemene | angle=atan2(y,x);
|
33 | 199 | equemene |
|
34 | 199 | equemene | if (angle<0)
|
35 | 199 | equemene | {
|
36 | 199 | equemene | angle+=(float)2.e0f*PI;
|
37 | 199 | equemene | }
|
38 | 199 | equemene |
|
39 | 199 | equemene | return angle;
|
40 | 199 | equemene | }
|
41 | 199 | equemene |
|
42 | 199 | equemene | float f(float v)
|
43 | 199 | equemene | {
|
44 | 199 | equemene | return v;
|
45 | 199 | equemene | }
|
46 | 199 | equemene |
|
47 | 199 | equemene | float g(float u,float m,float b)
|
48 | 199 | equemene | {
|
49 | 199 | equemene | return (3.*m/b*pow(u,2)-u);
|
50 | 199 | equemene | }
|
51 | 199 | equemene |
|
52 | 199 | equemene |
|
53 | 199 | equemene | void calcul(float *us,float *vs,float up,float vp,
|
54 | 199 | equemene | float h,float m,float b)
|
55 | 199 | equemene | {
|
56 | 199 | equemene | float c0,c1,c2,c3,d0,d1,d2,d3;
|
57 | 199 | equemene |
|
58 | 199 | equemene | c0=h*f(vp);
|
59 | 199 | equemene | c1=h*f(vp+c0/2.);
|
60 | 199 | equemene | c2=h*f(vp+c1/2.);
|
61 | 199 | equemene | c3=h*f(vp+c2);
|
62 | 199 | equemene | d0=h*g(up,m,b);
|
63 | 199 | equemene | d1=h*g(up+d0/2.,m,b);
|
64 | 199 | equemene | d2=h*g(up+d1/2.,m,b);
|
65 | 199 | equemene | d3=h*g(up+d2,m,b);
|
66 | 199 | equemene |
|
67 | 199 | equemene | *us=up+(c0+2.*c1+2.*c2+c3)/6.;
|
68 | 199 | equemene | *vs=vp+(d0+2.*d1+2.*d2+d3)/6.;
|
69 | 199 | equemene | }
|
70 | 199 | equemene |
|
71 | 199 | equemene | void rungekutta(float *ps,float *us,float *vs,
|
72 | 199 | equemene | float pp,float up,float vp,
|
73 | 199 | equemene | float h,float m,float b)
|
74 | 199 | equemene | {
|
75 | 199 | equemene | calcul(us,vs,up,vp,h,m,b);
|
76 | 199 | equemene | *ps=pp+h;
|
77 | 199 | equemene | }
|
78 | 199 | equemene |
|
79 | 199 | equemene | float decalage_spectral(float r,float b,float phi,
|
80 | 199 | equemene | float tho,float m)
|
81 | 199 | equemene | {
|
82 | 199 | equemene | return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi)));
|
83 | 199 | equemene | }
|
84 | 199 | equemene |
|
85 | 199 | equemene | float spectre(float rf,int q,float b,float db,
|
86 | 199 | equemene | float h,float r,float m,float bss)
|
87 | 199 | equemene | {
|
88 | 199 | equemene | float flx;
|
89 | 199 | equemene |
|
90 | 201 | equemene | flx=pow(r/m,q)*pow(rf,4)*b;
|
91 | 199 | equemene | return(flx);
|
92 | 199 | equemene | }
|
93 | 199 | equemene |
|
94 | 199 | equemene | float spectre_cn(float rf,float b,float db,
|
95 | 199 | equemene | float h,float r,float m,float bss)
|
96 | 199 | equemene | {
|
97 | 201 | equemene | double flx;
|
98 | 201 | equemene | double nu_rec,nu_em,qu,v,temp,temp_em,flux_int,m_point,planck,c,k,psc2,psk;
|
99 | 199 | equemene | int fi,posfreq;
|
100 | 199 | equemene |
|
101 | 199 | equemene | planck=6.62e-34;
|
102 | 199 | equemene | k=1.38e-23;
|
103 | 201 | equemene | psk=5.38e-11;
|
104 | 201 | equemene | psc2=7.35e-51;
|
105 | 199 | equemene | temp=3.e7;
|
106 | 199 | equemene | m_point=1.e14;
|
107 | 199 | equemene | v=1.-3./r;
|
108 | 199 | equemene |
|
109 | 201 | equemene | qu=1./sqrt(1.-3./r)/sqrt(r)*(sqrt(r)-sqrt(6.)+sqrt(3.)/2.*log((sqrt(r)+sqrt(3.))/(sqrt(r)-sqrt(3.))*(sqrt(6.)-sqrt(3.))/(sqrt(6.)+sqrt(3.))));
|
110 | 199 | equemene |
|
111 | 201 | equemene | temp_em=temp*sqrt(m)*exp(0.25*log(m_point))*exp(-0.75*log(r))*exp(-0.125*log(v))*exp(0.25*log(qu));
|
112 | 199 | equemene |
|
113 | 199 | equemene | flux_int=0;
|
114 | 199 | equemene | flx=0;
|
115 | 199 | equemene |
|
116 | 201 | equemene | for (fi=0;fi<nbr;fi++)
|
117 | 199 | equemene | {
|
118 | 201 | equemene | nu_em=bss*(float)fi/(float)nbr;
|
119 | 199 | equemene | nu_rec=nu_em*rf;
|
120 | 201 | equemene | posfreq=(int)(1./bss*nu_rec*(float)nbr);
|
121 | 199 | equemene | if ((posfreq>0)&&(posfreq<nbr))
|
122 | 199 | equemene | {
|
123 | 201 | equemene | //flux_int=2*planck/9.e16f*pow(nu_em,3)/(exp(planck*nu_em/k/temp_em)-1.)*pow(rf,3)*b*db*h;
|
124 | 201 | equemene | //flux_int=pow(nu_em,3)/(exp(planck*nu_em/k/temp_em)-1.)*pow(rf,3)*b;
|
125 | 201 | equemene | flux_int=2.*psc2*pow(nu_em,3)/(exp(psk*nu_em/temp_em)-1.)*pow(rf,3)*b;
|
126 | 199 | equemene | flx+=flux_int;
|
127 | 199 | equemene | }
|
128 | 199 | equemene | }
|
129 | 201 | equemene | //return(pow(rf,3)*b*temp_em);
|
130 | 201 | equemene | return((float)flx);
|
131 | 199 | equemene | return(flx);
|
132 | 199 | equemene | }
|
133 | 199 | equemene |
|
134 | 199 | equemene | void impact(float phi,float r,float b,float tho,float m,
|
135 | 199 | equemene | float *zp,float *fp,
|
136 | 199 | equemene | int q,float db,
|
137 | 199 | equemene | float h,float bss,int raie)
|
138 | 199 | equemene | {
|
139 | 199 | equemene | float flx,rf;
|
140 | 199 | equemene |
|
141 | 199 | equemene | rf=decalage_spectral(r,b,phi,tho,m);
|
142 | 199 | equemene |
|
143 | 199 | equemene | if (raie==0)
|
144 | 199 | equemene | {
|
145 | 199 | equemene | flx=spectre(rf,q,b,db,h,r,m,bss);
|
146 | 199 | equemene | }
|
147 | 199 | equemene | else
|
148 | 199 | equemene | {
|
149 | 199 | equemene | flx=spectre_cn(rf,b,db,h,r,m,bss);
|
150 | 199 | equemene | }
|
151 | 199 | equemene |
|
152 | 199 | equemene | *zp=1./rf;
|
153 | 199 | equemene | *fp=flx;
|
154 | 199 | equemene |
|
155 | 199 | equemene | }
|
156 | 199 | equemene |
|
157 | 201 | equemene | __kernel void EachPixel(__global float *zImage,__global float *fImage)
|
158 | 199 | equemene | {
|
159 | 199 | equemene | uint xi=(uint)get_global_id(0);
|
160 | 199 | equemene | uint yi=(uint)get_global_id(1);
|
161 | 199 | equemene | uint sizex=(uint)get_global_size(0);
|
162 | 199 | equemene | uint sizey=(uint)get_global_size(1);
|
163 | 199 | equemene |
|
164 | 199 | equemene | // Perform trajectory for each pixel
|
165 | 199 | equemene |
|
166 | 199 | equemene | float m,rs,ri,re,tho,ro;
|
167 | 199 | equemene | int q;
|
168 | 199 | equemene |
|
169 | 199 | equemene | float bss,stp;
|
170 | 199 | equemene | int nmx,dim;
|
171 | 199 | equemene | float d,bmx,db,b,h;
|
172 | 199 | equemene | float up,vp,pp;
|
173 | 199 | equemene | float us,vs,ps;
|
174 | 199 | equemene | float rp[2000];
|
175 | 199 | equemene | float zmx,fmx,zen,fen;
|
176 | 199 | equemene | float flux_tot,impc_tot;
|
177 | 199 | equemene | float phi,thi,thx,phd,php,nr,r;
|
178 | 199 | equemene | int ni,ii,i,imx,j,n,tst,dist,raie,pc,fcl,zcl;
|
179 | 199 | equemene | int nh;
|
180 | 199 | equemene | int ExitOnImpact;
|
181 | 199 | equemene | float zp,fp;
|
182 | 199 | equemene |
|
183 | 199 | equemene | m=1.;
|
184 | 199 | equemene | rs=2.*m;
|
185 | 199 | equemene | ri=3.*rs;
|
186 | 199 | equemene | re=12.;
|
187 | 199 | equemene | ro=100.;
|
188 | 199 | equemene | //tho=PI/180.*80;
|
189 | 200 | equemene | tho=PI/180.*80.;
|
190 | 199 | equemene | q=-2;
|
191 | 201 | equemene | dist=0;
|
192 | 199 | equemene | raie=0;
|
193 | 199 | equemene |
|
194 | 199 | equemene | nmx=(float)sizex/2.;
|
195 | 199 | equemene | stp=0.5;
|
196 | 199 | equemene | // Autosize for image
|
197 | 199 | equemene | bmx=1.25*re;
|
198 | 199 | equemene | b=0.;
|
199 | 199 | equemene | thx=asin(bmx/ro);
|
200 | 199 | equemene | pc=0;
|
201 | 199 | equemene |
|
202 | 201 | equemene | if (raie==0)
|
203 | 201 | equemene | {
|
204 | 201 | equemene | bss=2.;
|
205 | 201 | equemene | }
|
206 | 201 | equemene | else
|
207 | 201 | equemene | {
|
208 | 201 | equemene | bss=1.e6;
|
209 | 201 | equemene | }
|
210 | 201 | equemene |
|
211 | 199 | equemene | h=PI/5.e2f;
|
212 | 199 | equemene |
|
213 | 199 | equemene | // set origin as center of image
|
214 | 199 | equemene | float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
215 | 201 | equemene | float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
216 | 199 | equemene | // angle extracted from cylindric symmetry
|
217 | 199 | equemene | phi=atanp(x,y);
|
218 | 199 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
219 | 199 | equemene |
|
220 | 199 | equemene | if (dist==1)
|
221 | 199 | equemene | {
|
222 | 199 | equemene | db=bmx/nmx;
|
223 | 199 | equemene | // impact parameter
|
224 | 199 | equemene | b=sqrt(x*x+y*y)*(float)2.e0f/(float)sizex*bmx;
|
225 | 199 | equemene | up=0.;
|
226 | 199 | equemene | vp=1.;
|
227 | 199 | equemene | }
|
228 | 199 | equemene | else
|
229 | 199 | equemene | {
|
230 | 199 | equemene | b=sqrt(x*x+y*y)*(float)2.e0f/(float)sizex*bmx;
|
231 | 199 | equemene | thi=asin(b/ro);
|
232 | 199 | equemene | db=bmx/nmx;
|
233 | 199 | equemene | up=sin(thi);
|
234 | 199 | equemene | vp=cos(thi);
|
235 | 199 | equemene | }
|
236 | 199 | equemene |
|
237 | 199 | equemene | pp=0.;
|
238 | 199 | equemene | nh=0;
|
239 | 199 | equemene |
|
240 | 199 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
241 | 199 | equemene |
|
242 | 199 | equemene | rp[nh]=fabs(b/us);
|
243 | 199 | equemene |
|
244 | 199 | equemene | ExitOnImpact=0;
|
245 | 199 | equemene |
|
246 | 199 | equemene | do
|
247 | 199 | equemene | {
|
248 | 199 | equemene | nh++;
|
249 | 199 | equemene | pp=ps;
|
250 | 199 | equemene | up=us;
|
251 | 199 | equemene | vp=vs;
|
252 | 199 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
253 | 199 | equemene | rp[nh]=fabs(b/us);
|
254 | 200 | equemene | ExitOnImpact = ((fmod(pp,PI)<fmod(phd,PI))&&(fmod(ps,PI)>fmod(phd,PI)))&&(rp[nh]>ri)&&(rp[nh]<re)?1:0;
|
255 | 199 | equemene |
|
256 | 199 | equemene | } while ((rp[nh]>=rs)&&(rp[nh]<=rp[0])&&(ExitOnImpact==0));
|
257 | 199 | equemene |
|
258 | 199 | equemene | if (ExitOnImpact==1) {
|
259 | 199 | equemene | impact(phi,rp[nh-1],b,tho,m,&zp,&fp,q,db,h,bss,raie);
|
260 | 199 | equemene | }
|
261 | 199 | equemene | else
|
262 | 199 | equemene | {
|
263 | 199 | equemene | zp=0.;
|
264 | 201 | equemene | fp=0.;
|
265 | 199 | equemene | }
|
266 | 199 | equemene |
|
267 | 199 | equemene | //
|
268 | 201 | equemene | zImage[yi+sizex*xi]=(float)zp;
|
269 | 201 | equemene | fImage[yi+sizex*xi]=(float)fp;
|
270 | 199 | equemene |
|
271 | 201 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
272 | 199 | equemene |
|
273 | 199 | equemene | }
|
274 | 199 | equemene | """)
|
275 | 199 | equemene | |
276 | 199 | equemene | def ImageOutput(sigma,prefix): |
277 | 199 | equemene | Max=sigma.max() |
278 | 199 | equemene | Min=sigma.min() |
279 | 199 | equemene | |
280 | 199 | equemene | # Normalize value as 8bits Integer
|
281 | 199 | equemene | SigmaInt=(255*(sigma-Min)/(Max-Min)).astype('uint8') |
282 | 199 | equemene | image = Image.fromarray(SigmaInt) |
283 | 199 | equemene | image.save("%s.jpg" % prefix)
|
284 | 199 | equemene | |
285 | 201 | equemene | def BlackHole(zImage,fImage,Device): |
286 | 199 | equemene | |
287 | 199 | equemene | kernel_params = {} |
288 | 199 | equemene | |
289 | 199 | equemene | # Je detecte un peripherique GPU dans la liste des peripheriques
|
290 | 199 | equemene | Id=0
|
291 | 199 | equemene | HasXPU=False
|
292 | 199 | equemene | for platform in cl.get_platforms(): |
293 | 199 | equemene | for device in platform.get_devices(): |
294 | 199 | equemene | if Id==Device:
|
295 | 199 | equemene | XPU=device |
296 | 199 | equemene | print "CPU/GPU selected: ",device.name.lstrip() |
297 | 199 | equemene | HasXPU=True
|
298 | 199 | equemene | Id+=1
|
299 | 199 | equemene | |
300 | 199 | equemene | if HasXPU==False: |
301 | 199 | equemene | print "No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1) |
302 | 199 | equemene | sys.exit() |
303 | 199 | equemene | |
304 | 199 | equemene | ctx = cl.Context([XPU]) |
305 | 199 | equemene | queue = cl.CommandQueue(ctx, |
306 | 199 | equemene | properties=cl.command_queue_properties.PROFILING_ENABLE) |
307 | 199 | equemene | |
308 | 199 | equemene | BlackHoleCL = cl.Program(ctx,KERNEL_CODE.substitute(kernel_params)).build() |
309 | 199 | equemene | |
310 | 199 | equemene | # Je recupere les flag possibles pour les buffers
|
311 | 199 | equemene | mf = cl.mem_flags |
312 | 199 | equemene | |
313 | 201 | equemene | print(zImage) |
314 | 199 | equemene | |
315 | 199 | equemene | # Program based on Kernel2
|
316 | 201 | equemene | zImageCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=zImage) |
317 | 201 | equemene | fImageCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=fImage) |
318 | 199 | equemene | |
319 | 199 | equemene | start_time=time.time() |
320 | 199 | equemene | |
321 | 201 | equemene | CLLaunch=BlackHoleCL.EachPixel(queue,(numpy.int32(zImage.shape[0]),numpy.int32(zImage.shape[1])),None,zImageCL,fImageCL) |
322 | 199 | equemene | |
323 | 199 | equemene | CLLaunch.wait() |
324 | 199 | equemene | elapsed = time.time()-start_time |
325 | 199 | equemene | print("Elapsed %f: " % elapsed)
|
326 | 199 | equemene | |
327 | 201 | equemene | cl.enqueue_copy(queue,zImage,zImageCL).wait() |
328 | 201 | equemene | cl.enqueue_copy(queue,fImage,fImageCL).wait() |
329 | 199 | equemene | |
330 | 201 | equemene | print(zImage.max()) |
331 | 201 | equemene | print(fImage.max()) |
332 | 201 | equemene | zImageCL.release() |
333 | 201 | equemene | fImageCL.release() |
334 | 201 | equemene | |
335 | 201 | equemene | ImageOutput(zImage,"TrouNoirZ")
|
336 | 201 | equemene | ImageOutput(fImage,"TrouNoirF")
|
337 | 199 | equemene | return(elapsed)
|
338 | 199 | equemene | |
339 | 199 | equemene | if __name__=='__main__': |
340 | 199 | equemene | |
341 | 199 | equemene | GpuStyle = 'OpenCL'
|
342 | 199 | equemene | Mass = 1.
|
343 | 199 | equemene | # Internal Radius 3 times de Schwarzschild Radius
|
344 | 199 | equemene | InternalRadius=6.*Mass
|
345 | 199 | equemene | #
|
346 | 199 | equemene | ExternalRadius=12.
|
347 | 199 | equemene | #
|
348 | 199 | equemene | ObserverDistance=100.
|
349 | 199 | equemene | # Angle with normal to disc 10 degrees
|
350 | 199 | equemene | Angle = numpy.pi/180.*(90.-10.) |
351 | 199 | equemene | # Radiation of disc : BlackBody or Monochromatic
|
352 | 199 | equemene | BlackBody = True
|
353 | 199 | equemene | # Camera : Angular Camera or plate with the size of camera
|
354 | 199 | equemene | AngularCamera = True
|
355 | 199 | equemene | # Size of image
|
356 | 199 | equemene | Size=256
|
357 | 199 | equemene | # Variable Type
|
358 | 199 | equemene | VariableType='FP32'
|
359 | 199 | equemene | # ?
|
360 | 199 | equemene | q=-2
|
361 | 199 | equemene | |
362 | 199 | equemene | HowToUse='%s -h [Help] -b [BlackBodyEmission] -c [AngularCamera] -s <SizeInPixels> -m <Mass> -i <DiscInternalRadius> -x <DiscExternalRadius> -o <ObservatorDistance> -a <AngleAboveDisc> -d <DeviceId> -g <CUDA/OpenCL> -t <FP32/FP64>'
|
363 | 199 | equemene | |
364 | 199 | equemene | try:
|
365 | 199 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hbcs:m:i:x:o:a:d:g:t:",["blackbody","camera","size=","mass=","internal=","external=","observer=","angle=","device=","gpustyle=","variabletype="]) |
366 | 199 | equemene | except getopt.GetoptError:
|
367 | 199 | equemene | print(HowToUse % sys.argv[0])
|
368 | 199 | equemene | sys.exit(2)
|
369 | 199 | equemene | |
370 | 199 | equemene | # List of Devices
|
371 | 199 | equemene | Devices=[] |
372 | 199 | equemene | Alu={} |
373 | 199 | equemene | |
374 | 199 | equemene | for opt, arg in opts: |
375 | 199 | equemene | if opt == '-h': |
376 | 199 | equemene | print(HowToUse % sys.argv[0])
|
377 | 199 | equemene | |
378 | 199 | equemene | print("\nInformations about devices detected under OpenCL API:")
|
379 | 199 | equemene | # For PyOpenCL import
|
380 | 199 | equemene | try:
|
381 | 199 | equemene | import pyopencl as cl |
382 | 199 | equemene | Id=0
|
383 | 199 | equemene | for platform in cl.get_platforms(): |
384 | 199 | equemene | for device in platform.get_devices(): |
385 | 199 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
386 | 199 | equemene | deviceType="xPU"
|
387 | 199 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
388 | 199 | equemene | Id=Id+1
|
389 | 199 | equemene | |
390 | 199 | equemene | except:
|
391 | 199 | equemene | print("Your platform does not seem to support OpenCL")
|
392 | 199 | equemene | |
393 | 199 | equemene | print("\nInformations about devices detected under CUDA API:")
|
394 | 199 | equemene | # For PyCUDA import
|
395 | 199 | equemene | try:
|
396 | 199 | equemene | import pycuda.driver as cuda |
397 | 199 | equemene | cuda.init() |
398 | 199 | equemene | for Id in range(cuda.Device.count()): |
399 | 199 | equemene | device=cuda.Device(Id) |
400 | 199 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
401 | 199 | equemene | print
|
402 | 199 | equemene | except:
|
403 | 199 | equemene | print("Your platform does not seem to support CUDA")
|
404 | 199 | equemene | |
405 | 199 | equemene | sys.exit() |
406 | 199 | equemene | |
407 | 199 | equemene | elif opt in ("-d", "--device"): |
408 | 199 | equemene | # Devices.append(int(arg))
|
409 | 199 | equemene | Device=int(arg)
|
410 | 199 | equemene | elif opt in ("-g", "--gpustyle"): |
411 | 199 | equemene | GpuStyle = arg |
412 | 199 | equemene | elif opt in ("-t", "--variabletype"): |
413 | 199 | equemene | VariableType = arg |
414 | 199 | equemene | elif opt in ("-s", "--size"): |
415 | 199 | equemene | Size = int(arg)
|
416 | 199 | equemene | elif opt in ("-m", "--mass"): |
417 | 199 | equemene | Mass = float(arg)
|
418 | 199 | equemene | elif opt in ("-i", "--internal"): |
419 | 199 | equemene | InternalRadius = float(arg)
|
420 | 199 | equemene | elif opt in ("-e", "--external"): |
421 | 199 | equemene | ExternalRadius = float(arg)
|
422 | 199 | equemene | elif opt in ("-o", "--observer"): |
423 | 199 | equemene | ObserverDistance = float(arg)
|
424 | 199 | equemene | elif opt in ("-a", "--angle"): |
425 | 199 | equemene | Angle = numpy.pi/180.*(90.-float(arg)) |
426 | 199 | equemene | elif opt in ("-b", "--blackbody"): |
427 | 199 | equemene | BlackBody = True
|
428 | 199 | equemene | elif opt in ("-c", "--camera"): |
429 | 199 | equemene | AngularCamera = True
|
430 | 199 | equemene | |
431 | 199 | equemene | print("Device Identification selected : %s" % Device)
|
432 | 199 | equemene | print("GpuStyle used : %s" % GpuStyle)
|
433 | 199 | equemene | print("VariableType : %s" % VariableType)
|
434 | 199 | equemene | print("Size : %i" % Size)
|
435 | 199 | equemene | print("Mass : %f" % Mass)
|
436 | 199 | equemene | print("Internal Radius : %f" % InternalRadius)
|
437 | 199 | equemene | print("External Radius : %f" % ExternalRadius)
|
438 | 199 | equemene | print("Observer Distance : %f" % ObserverDistance)
|
439 | 199 | equemene | print("Angle with normal of (in radians) : %f" % Angle)
|
440 | 199 | equemene | print("Black Body Disc Emission (monochromatic instead) : %s" % BlackBody)
|
441 | 199 | equemene | print("Angular Camera (dimension of object instead) : %s" % AngularCamera)
|
442 | 199 | equemene | |
443 | 199 | equemene | if GpuStyle=='CUDA': |
444 | 199 | equemene | print("\nSelection of CUDA device")
|
445 | 199 | equemene | try:
|
446 | 199 | equemene | # For PyCUDA import
|
447 | 199 | equemene | import pycuda.driver as cuda |
448 | 199 | equemene | |
449 | 199 | equemene | cuda.init() |
450 | 199 | equemene | for Id in range(cuda.Device.count()): |
451 | 199 | equemene | device=cuda.Device(Id) |
452 | 199 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
453 | 199 | equemene | if Id in Devices: |
454 | 199 | equemene | Alu[Id]='GPU'
|
455 | 199 | equemene | |
456 | 199 | equemene | except ImportError: |
457 | 199 | equemene | print("Platform does not seem to support CUDA")
|
458 | 199 | equemene | |
459 | 199 | equemene | if GpuStyle=='OpenCL': |
460 | 199 | equemene | print("\nSelection of OpenCL device")
|
461 | 199 | equemene | try:
|
462 | 199 | equemene | # For PyOpenCL import
|
463 | 199 | equemene | import pyopencl as cl |
464 | 199 | equemene | Id=0
|
465 | 199 | equemene | for platform in cl.get_platforms(): |
466 | 199 | equemene | for device in platform.get_devices(): |
467 | 199 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
468 | 199 | equemene | deviceType="xPU"
|
469 | 199 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
|
470 | 199 | equemene | |
471 | 199 | equemene | if Id in Devices: |
472 | 199 | equemene | # Set the Alu as detected Device Type
|
473 | 199 | equemene | Alu[Id]=deviceType |
474 | 199 | equemene | Id=Id+1
|
475 | 199 | equemene | except ImportError: |
476 | 199 | equemene | print("Platform does not seem to support OpenCL")
|
477 | 199 | equemene | |
478 | 199 | equemene | # print(Devices,Alu)
|
479 | 199 | equemene | |
480 | 199 | equemene | # MyImage=numpy.where(numpy.random.zeros(Size,Size)>0,1,-1).astype(numpy.float32)
|
481 | 201 | equemene | zImage=numpy.zeros((Size,Size),dtype=numpy.float32) |
482 | 201 | equemene | fImage=numpy.zeros((Size,Size),dtype=numpy.float32) |
483 | 199 | equemene | |
484 | 201 | equemene | print(zImage) |
485 | 199 | equemene | |
486 | 201 | equemene | duration=BlackHole(zImage,fImage,Device) |
487 | 199 | equemene |