root / Pi / XPU / PiXpuMPI.py @ 185
Historique | Voir | Annoter | Télécharger (13,47 ko)
1 | 127 | equemene | #!/usr/bin/env python3
|
---|---|---|---|
2 | 107 | equemene | |
3 | 107 | equemene | #
|
4 | 107 | equemene | # Pi-by-MonteCarlo using PyCUDA/PyOpenCL
|
5 | 107 | equemene | #
|
6 | 107 | equemene | # CC BY-NC-SA 2011 : Emmanuel QUEMENER <emmanuel.quemener@gmail.com>
|
7 | 107 | equemene | # Cecill v2 : Emmanuel QUEMENER <emmanuel.quemener@gmail.com>
|
8 | 107 | equemene | #
|
9 | 107 | equemene | # Thanks to Andreas Klockner for PyCUDA:
|
10 | 107 | equemene | # http://mathema.tician.de/software/pycuda
|
11 | 107 | equemene | # Thanks to Andreas Klockner for PyOpenCL:
|
12 | 107 | equemene | # http://mathema.tician.de/software/pyopencl
|
13 | 107 | equemene | #
|
14 | 107 | equemene | |
15 | 107 | equemene | # 2013-01-01 : problems with launch timeout
|
16 | 107 | equemene | # http://stackoverflow.com/questions/497685/how-do-you-get-around-the-maximum-cuda-run-time
|
17 | 107 | equemene | # Option "Interactive" "0" in /etc/X11/xorg.conf
|
18 | 107 | equemene | |
19 | 107 | equemene | # Common tools
|
20 | 107 | equemene | import numpy |
21 | 107 | equemene | from numpy.random import randint as nprnd |
22 | 107 | equemene | import sys |
23 | 107 | equemene | import getopt |
24 | 107 | equemene | import time |
25 | 107 | equemene | import math |
26 | 107 | equemene | import itertools |
27 | 107 | equemene | from socket import gethostname |
28 | 107 | equemene | |
29 | 107 | equemene | import mpi4py |
30 | 107 | equemene | from mpi4py import MPI |
31 | 107 | equemene | |
32 | 107 | equemene | from PiXPU import * |
33 | 107 | equemene | |
34 | 107 | equemene | if __name__=='__main__': |
35 | 107 | equemene | |
36 | 107 | equemene | # MPI Init
|
37 | 107 | equemene | comm = MPI.COMM_WORLD |
38 | 107 | equemene | rank = comm.Get_rank() |
39 | 107 | equemene | |
40 | 107 | equemene | # Define number of Nodes on with computing is performed (exclude 0)
|
41 | 107 | equemene | RankSize=comm.Get_size() |
42 | 107 | equemene | |
43 | 107 | equemene | if rank == 0: |
44 | 107 | equemene | |
45 | 107 | equemene | # Set defaults values
|
46 | 107 | equemene | |
47 | 107 | equemene | # Id of Device : 1 is for first find !
|
48 | 107 | equemene | Device=1
|
49 | 107 | equemene | # GPU style can be Cuda (Nvidia implementation) or OpenCL
|
50 | 107 | equemene | GpuStyle='OpenCL'
|
51 | 107 | equemene | # Iterations is integer
|
52 | 107 | equemene | Iterations=10000000
|
53 | 107 | equemene | # BlocksBlocks in first number of Blocks to explore
|
54 | 107 | equemene | BlocksBegin=1
|
55 | 107 | equemene | # BlocksEnd is last number of Blocks to explore
|
56 | 107 | equemene | BlocksEnd=16
|
57 | 107 | equemene | # BlocksStep is the step of Blocks to explore
|
58 | 107 | equemene | BlocksStep=1
|
59 | 107 | equemene | # ThreadsBlocks in first number of Blocks to explore
|
60 | 107 | equemene | ThreadsBegin=1
|
61 | 107 | equemene | # ThreadsEnd is last number of Blocks to explore
|
62 | 107 | equemene | ThreadsEnd=1
|
63 | 107 | equemene | # ThreadsStep is the step of Blocks to explore
|
64 | 107 | equemene | ThreadsStep=1
|
65 | 107 | equemene | # Redo is the times to redo the test to improve metrology
|
66 | 107 | equemene | Redo=1
|
67 | 107 | equemene | # OutMetrology is method for duration estimation : False is GPU inside
|
68 | 107 | equemene | OutMetrology=False
|
69 | 107 | equemene | Metrology='InMetro'
|
70 | 107 | equemene | # Curves is True to print the curves
|
71 | 107 | equemene | Curves=False
|
72 | 107 | equemene | # Fit is True to print the curves
|
73 | 107 | equemene | Fit=False
|
74 | 107 | equemene | # Marsaglia RNG
|
75 | 107 | equemene | RNG='MWC'
|
76 | 107 | equemene | # Value type : INT32, INT64, FP32, FP64
|
77 | 107 | equemene | ValueType='FP32'
|
78 | 107 | equemene | |
79 | 129 | equemene | HowToUse='%s -c (Print Curves) -d <DeviceId> -g <CUDA/OpenCL> -i <Iterations> -b <BlocksBegin> -e <BlocksEnd> -s <BlocksStep> -f <ThreadsFirst> -l <ThreadsLast> -t <ThreadssTep> -r <RedoToImproveStats> -m <SHR3/CONG/MWC/KISS> -v <INT32/INT64/FP32/FP64>'
|
80 | 107 | equemene | |
81 | 107 | equemene | try:
|
82 | 129 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hcg:i:b:e:s:f:l:t:r:d:m:v:",["gpustyle=","iterations=","blocksBegin=","blocksEnd=","blocksStep=","threadsFirst=","threadsLast=","threadssTep=","redo=","device=","marsaglia=","valuetype="]) |
83 | 107 | equemene | except getopt.GetoptError:
|
84 | 127 | equemene | print(HowToUse % sys.argv[0])
|
85 | 107 | equemene | sys.exit(2)
|
86 | 107 | equemene | |
87 | 107 | equemene | # List of Devices
|
88 | 107 | equemene | Devices=[] |
89 | 107 | equemene | Alu={} |
90 | 107 | equemene | |
91 | 107 | equemene | for opt, arg in opts: |
92 | 107 | equemene | if opt == '-h': |
93 | 127 | equemene | print(HowToUse % sys.argv[0])
|
94 | 107 | equemene | |
95 | 127 | equemene | print("\nInformations about devices detected under OpenCL:")
|
96 | 107 | equemene | # For PyOpenCL import
|
97 | 107 | equemene | try:
|
98 | 107 | equemene | import pyopencl as cl |
99 | 129 | equemene | Id=0
|
100 | 107 | equemene | for platform in cl.get_platforms(): |
101 | 107 | equemene | for device in platform.get_devices(): |
102 | 138 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
103 | 157 | equemene | deviceType="xPU"
|
104 | 127 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
105 | 107 | equemene | Id=Id+1
|
106 | 107 | equemene | |
107 | 107 | equemene | print
|
108 | 123 | equemene | except:
|
109 | 127 | equemene | print("Your platform does not seem to support OpenCL")
|
110 | 123 | equemene | |
111 | 129 | equemene | print("\nInformations about devices detected under CUDA API:")
|
112 | 123 | equemene | # For PyCUDA import
|
113 | 123 | equemene | try:
|
114 | 123 | equemene | import pycuda.driver as cuda |
115 | 123 | equemene | cuda.init() |
116 | 123 | equemene | for Id in range(cuda.Device.count()): |
117 | 123 | equemene | device=cuda.Device(Id) |
118 | 127 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
119 | 123 | equemene | print
|
120 | 123 | equemene | except:
|
121 | 127 | equemene | print("Your platform does not seem to support CUDA")
|
122 | 107 | equemene | |
123 | 123 | equemene | sys.exit() |
124 | 123 | equemene | |
125 | 107 | equemene | elif opt == '-c': |
126 | 107 | equemene | Curves=True
|
127 | 107 | equemene | elif opt in ("-d", "--device"): |
128 | 107 | equemene | Devices.append(int(arg))
|
129 | 107 | equemene | elif opt in ("-g", "--gpustyle"): |
130 | 107 | equemene | GpuStyle = arg |
131 | 107 | equemene | elif opt in ("-m", "--marsaglia"): |
132 | 107 | equemene | RNG = arg |
133 | 107 | equemene | elif opt in ("-v", "--valuetype"): |
134 | 107 | equemene | ValueType = arg |
135 | 107 | equemene | elif opt in ("-i", "--iterations"): |
136 | 107 | equemene | Iterations = numpy.uint64(arg) |
137 | 107 | equemene | elif opt in ("-b", "--blocksbegin"): |
138 | 107 | equemene | BlocksBegin = int(arg)
|
139 | 107 | equemene | elif opt in ("-e", "--blocksend"): |
140 | 107 | equemene | BlocksEnd = int(arg)
|
141 | 107 | equemene | elif opt in ("-s", "--blocksstep"): |
142 | 107 | equemene | BlocksStep = int(arg)
|
143 | 107 | equemene | elif opt in ("-f", "--threadsfirst"): |
144 | 107 | equemene | ThreadsBegin = int(arg)
|
145 | 107 | equemene | elif opt in ("-l", "--threadslast"): |
146 | 107 | equemene | ThreadsEnd = int(arg)
|
147 | 107 | equemene | elif opt in ("-t", "--threadsstep"): |
148 | 107 | equemene | ThreadsStep = int(arg)
|
149 | 107 | equemene | elif opt in ("-r", "--redo"): |
150 | 107 | equemene | Redo = int(arg)
|
151 | 107 | equemene | |
152 | 127 | equemene | print("Devices Identification : %s" % Devices)
|
153 | 127 | equemene | print("GpuStyle used : %s" % GpuStyle)
|
154 | 127 | equemene | print("Iterations : %s" % Iterations)
|
155 | 127 | equemene | print("Number of Blocks on begin : %s" % BlocksBegin)
|
156 | 127 | equemene | print("Number of Blocks on end : %s" % BlocksEnd)
|
157 | 127 | equemene | print("Step on Blocks : %s" % BlocksStep)
|
158 | 127 | equemene | print("Number of Threads on begin : %s" % ThreadsBegin)
|
159 | 127 | equemene | print("Number of Threads on end : %s" % ThreadsEnd)
|
160 | 127 | equemene | print("Step on Threads : %s" % ThreadsStep)
|
161 | 127 | equemene | print("Number of redo : %s" % Redo)
|
162 | 127 | equemene | print("Metrology done out of XPU : %r" % OutMetrology)
|
163 | 127 | equemene | print("Type of Marsaglia RNG used : %s" % RNG)
|
164 | 127 | equemene | print("Type of variable : %s" % ValueType)
|
165 | 107 | equemene | |
166 | 107 | equemene | if GpuStyle=='CUDA': |
167 | 107 | equemene | try:
|
168 | 107 | equemene | # For PyCUDA import
|
169 | 107 | equemene | import pycuda.driver as cuda |
170 | 129 | equemene | |
171 | 129 | equemene | cuda.init() |
172 | 129 | equemene | for Id in range(cuda.Device.count()): |
173 | 129 | equemene | device=cuda.Device(Id) |
174 | 129 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
175 | 129 | equemene | if Id in Devices: |
176 | 129 | equemene | Alu[Id]='GPU'
|
177 | 107 | equemene | except ImportError: |
178 | 127 | equemene | print("Platform does not seem to support CUDA")
|
179 | 107 | equemene | |
180 | 107 | equemene | if GpuStyle=='OpenCL': |
181 | 107 | equemene | try:
|
182 | 107 | equemene | # For PyOpenCL import
|
183 | 107 | equemene | import pyopencl as cl |
184 | 129 | equemene | Id=0
|
185 | 107 | equemene | for platform in cl.get_platforms(): |
186 | 107 | equemene | for device in platform.get_devices(): |
187 | 138 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
188 | 138 | equemene | deviceType="*PU"
|
189 | 127 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
|
190 | 107 | equemene | |
191 | 107 | equemene | if Id in Devices: |
192 | 107 | equemene | # Set the Alu as detected Device Type
|
193 | 107 | equemene | Alu[Id]=deviceType |
194 | 107 | equemene | Id=Id+1
|
195 | 107 | equemene | except ImportError: |
196 | 127 | equemene | print("Platform does not seem to support OpenCL")
|
197 | 107 | equemene | |
198 | 127 | equemene | print(Devices,Alu) |
199 | 107 | equemene | |
200 | 127 | equemene | BlocksList=range(BlocksBegin,BlocksEnd+BlocksStep,BlocksStep)
|
201 | 127 | equemene | ThreadsList=range(ThreadsBegin,ThreadsEnd+ThreadsStep,ThreadsStep)
|
202 | 107 | equemene | |
203 | 107 | equemene | ExploredJobs=numpy.array([]).astype(numpy.uint32) |
204 | 107 | equemene | ExploredBlocks=numpy.array([]).astype(numpy.uint32) |
205 | 107 | equemene | ExploredThreads=numpy.array([]).astype(numpy.uint32) |
206 | 107 | equemene | avgD=numpy.array([]).astype(numpy.float32) |
207 | 107 | equemene | medD=numpy.array([]).astype(numpy.float32) |
208 | 107 | equemene | stdD=numpy.array([]).astype(numpy.float32) |
209 | 107 | equemene | minD=numpy.array([]).astype(numpy.float32) |
210 | 107 | equemene | maxD=numpy.array([]).astype(numpy.float32) |
211 | 107 | equemene | avgR=numpy.array([]).astype(numpy.float32) |
212 | 107 | equemene | medR=numpy.array([]).astype(numpy.float32) |
213 | 107 | equemene | stdR=numpy.array([]).astype(numpy.float32) |
214 | 107 | equemene | minR=numpy.array([]).astype(numpy.float32) |
215 | 107 | equemene | maxR=numpy.array([]).astype(numpy.float32) |
216 | 107 | equemene | |
217 | 129 | equemene | IterationsMPI=numpy.uint64(Iterations/len(Devices))
|
218 | 129 | equemene | if Iterations%len(Devices)!=0: |
219 | 129 | equemene | IterationsMPI+=1
|
220 | 129 | equemene | |
221 | 107 | equemene | for Blocks,Threads in itertools.product(BlocksList,ThreadsList): |
222 | 107 | equemene | |
223 | 107 | equemene | ExploredJobs=numpy.append(ExploredJobs,Blocks*Threads) |
224 | 107 | equemene | ExploredBlocks=numpy.append(ExploredBlocks,Blocks) |
225 | 107 | equemene | ExploredThreads=numpy.append(ExploredThreads,Threads) |
226 | 129 | equemene | |
227 | 129 | equemene | DurationItem=numpy.array([]).astype(numpy.float32) |
228 | 129 | equemene | Duration=numpy.array([]).astype(numpy.float32) |
229 | 129 | equemene | Rate=numpy.array([]).astype(numpy.float32) |
230 | 129 | equemene | for i in range(Redo): |
231 | 129 | equemene | time_start=time.time() |
232 | 129 | equemene | |
233 | 129 | equemene | r=1
|
234 | 129 | equemene | # Distribution of Devices over nodes
|
235 | 129 | equemene | InputCL={} |
236 | 129 | equemene | InputCL['Iterations']=IterationsMPI
|
237 | 129 | equemene | InputCL['Steps']=1 |
238 | 129 | equemene | InputCL['Blocks']=Blocks
|
239 | 129 | equemene | InputCL['Threads']=Threads
|
240 | 129 | equemene | InputCL['RNG']=RNG
|
241 | 129 | equemene | InputCL['ValueType']=ValueType
|
242 | 129 | equemene | InputCL['GpuStyle']=GpuStyle
|
243 | 129 | equemene | |
244 | 129 | equemene | for Device in Devices[1:]: |
245 | 129 | equemene | print("Send to device %i on rank %i" % (Device,r))
|
246 | 129 | equemene | InputCL['Device']=Device
|
247 | 129 | equemene | comm.send('CONTINUE',dest=r,tag=11) |
248 | 129 | equemene | comm.send(InputCL,dest=r,tag=11)
|
249 | 129 | equemene | r+=1
|
250 | 129 | equemene | |
251 | 129 | equemene | # Compute on rank 0
|
252 | 129 | equemene | print("Compute on rank 0")
|
253 | 129 | equemene | InputCL['Device']=Devices[0] |
254 | 129 | equemene | |
255 | 107 | equemene | if GpuStyle=='CUDA': |
256 | 107 | equemene | try:
|
257 | 129 | equemene | OutputCL=MetropolisCuda(InputCL) |
258 | 107 | equemene | except:
|
259 | 127 | equemene | print("Problem with (%i,%i) // computations on Cuda" % (Blocks,Threads))
|
260 | 107 | equemene | elif GpuStyle=='OpenCL': |
261 | 107 | equemene | try:
|
262 | 129 | equemene | OutputCL=MetropolisOpenCL(InputCL) |
263 | 129 | equemene | except:
|
264 | 129 | equemene | print("Problem with (%i,%i) // computations on OpenCL" % (Blocks,Threads))
|
265 | 107 | equemene | |
266 | 129 | equemene | Inside=OutputCL['Inside']
|
267 | 129 | equemene | NewIterations=OutputCL['NewIterations']
|
268 | 107 | equemene | |
269 | 129 | equemene | for slave in range(1,len(Devices)): |
270 | 129 | equemene | print("Get OutputCL from %i" % slave)
|
271 | 129 | equemene | OutputCL=comm.recv(source=slave,tag=11)
|
272 | 129 | equemene | print(OutputCL) |
273 | 129 | equemene | NewIterations+=OutputCL['NewIterations']
|
274 | 129 | equemene | Inside+=OutputCL['Inside']
|
275 | 107 | equemene | |
276 | 129 | equemene | print("Pi estimation %.8f" % (4./NewIterations*Inside)) |
277 | 129 | equemene | |
278 | 129 | equemene | Duration=numpy.append(Duration,time.time()-time_start) |
279 | 129 | equemene | Rate=numpy.append(Rate,NewIterations/Duration[-1])
|
280 | 129 | equemene | |
281 | 107 | equemene | avgD=numpy.append(avgD,numpy.average(Duration)) |
282 | 107 | equemene | medD=numpy.append(medD,numpy.median(Duration)) |
283 | 107 | equemene | stdD=numpy.append(stdD,numpy.std(Duration)) |
284 | 107 | equemene | minD=numpy.append(minD,numpy.min(Duration)) |
285 | 107 | equemene | maxD=numpy.append(maxD,numpy.max(Duration)) |
286 | 107 | equemene | avgR=numpy.append(avgR,numpy.average(Rate)) |
287 | 107 | equemene | medR=numpy.append(medR,numpy.median(Rate)) |
288 | 107 | equemene | stdR=numpy.append(stdR,numpy.std(Rate)) |
289 | 107 | equemene | minR=numpy.append(minR,numpy.min(Rate)) |
290 | 107 | equemene | maxR=numpy.append(maxR,numpy.max(Rate)) |
291 | 107 | equemene | |
292 | 127 | equemene | print("%.2f %.2f %.2f %.2f %.2f %i %i %i %i %i" % (avgD[-1],medD[-1],stdD[-1],minD[-1],maxD[-1],avgR[-1],medR[-1],stdR[-1],minR[-1],maxR[-1])) |
293 | 107 | equemene | |
294 | 131 | equemene | numpy.savez("PiMPI_%s_%s_%s_%s_%s_%s_%s_%s_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu[Devices[0]],GpuStyle,BlocksBegin,BlocksEnd,ThreadsBegin,ThreadsEnd,Iterations,Devices[0],Metrology,gethostname()),(ExploredBlocks,ExploredThreads,avgD,medD,stdD,minD,maxD,avgR,medR,stdR,minR,maxR)) |
295 | 107 | equemene | ToSave=[ ExploredBlocks,ExploredThreads,avgD,medD,stdD,minD,maxD,avgR,medR,stdR,minR,maxR ] |
296 | 131 | equemene | numpy.savetxt("PiMPI_%s_%s_%s_%s_%s_%s_%s_%i_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu[Devices[0]],GpuStyle,BlocksBegin,BlocksEnd,ThreadsBegin,ThreadsEnd,Iterations,Devices[0],Metrology,gethostname()),numpy.transpose(ToSave),fmt='%i %i %e %e %e %e %e %i %i %i %i %i') |
297 | 107 | equemene | |
298 | 107 | equemene | if Fit:
|
299 | 107 | equemene | FitAndPrint(ExploredJobs,median,Curves) |
300 | 107 | equemene | # Send MPI exit tag
|
301 | 127 | equemene | for slave in range(1,RankSize): |
302 | 107 | equemene | comm.send('BREAK',dest=slave,tag=11) |
303 | 107 | equemene | |
304 | 107 | equemene | else:
|
305 | 107 | equemene | while True: |
306 | 107 | equemene | Signal=comm.recv(source=0,tag=11) |
307 | 107 | equemene | if Signal=='CONTINUE': |
308 | 107 | equemene | # Receive information from Master
|
309 | 107 | equemene | InputCL=comm.recv(source=0,tag=11) |
310 | 127 | equemene | print("Parameters retreive for rank %s of %s on %s from master:" % (rank,RankSize,gethostname()))
|
311 | 127 | equemene | print("Input CL:" % InputCL)
|
312 | 107 | equemene | # Execute on slave
|
313 | 129 | equemene | |
314 | 129 | equemene | if InputCL['GpuStyle']=='CUDA': |
315 | 129 | equemene | try:
|
316 | 129 | equemene | OutputCL=MetropolisCuda(InputCL) |
317 | 129 | equemene | except:
|
318 | 129 | equemene | print("Problem with (%i,%i) // computations on Cuda" % (InputCL['Blocks'],InputCL['Threads'])) |
319 | 129 | equemene | elif InputCL['GpuStyle']=='OpenCL': |
320 | 129 | equemene | try:
|
321 | 129 | equemene | OutputCL=MetropolisOpenCL(InputCL) |
322 | 129 | equemene | except:
|
323 | 129 | equemene | print("Problem with (%i,%i) // computations on OpenCL" % (InputCL['Blocks'],InputCL['Threads'])) |
324 | 129 | equemene | |
325 | 127 | equemene | print("Output CL:" % OutputCL)
|
326 | 107 | equemene | # Send information to Master
|
327 | 107 | equemene | comm.send(OutputCL,dest=0,tag=11) |
328 | 127 | equemene | print("Data sent to master")
|
329 | 107 | equemene | else:
|
330 | 127 | equemene | print('Exit signal from Master')
|
331 | 107 | equemene | break |