root / Pi / XPU / PiXPU.py @ 185
Historique | Voir | Annoter | Télécharger (31,02 ko)
1 | 127 | equemene | #!/usr/bin/env python3
|
---|---|---|---|
2 | 102 | equemene | |
3 | 102 | equemene | #
|
4 | 102 | equemene | # Pi-by-MonteCarlo using PyCUDA/PyOpenCL
|
5 | 102 | equemene | #
|
6 | 102 | equemene | # CC BY-NC-SA 2011 : Emmanuel QUEMENER <emmanuel.quemener@gmail.com>
|
7 | 102 | equemene | # Cecill v2 : Emmanuel QUEMENER <emmanuel.quemener@gmail.com>
|
8 | 102 | equemene | #
|
9 | 102 | equemene | # Thanks to Andreas Klockner for PyCUDA:
|
10 | 102 | equemene | # http://mathema.tician.de/software/pycuda
|
11 | 102 | equemene | # Thanks to Andreas Klockner for PyOpenCL:
|
12 | 102 | equemene | # http://mathema.tician.de/software/pyopencl
|
13 | 102 | equemene | #
|
14 | 102 | equemene | |
15 | 102 | equemene | # 2013-01-01 : problems with launch timeout
|
16 | 102 | equemene | # http://stackoverflow.com/questions/497685/how-do-you-get-around-the-maximum-cuda-run-time
|
17 | 102 | equemene | # Option "Interactive" "0" in /etc/X11/xorg.conf
|
18 | 102 | equemene | |
19 | 102 | equemene | # Common tools
|
20 | 102 | equemene | import numpy |
21 | 102 | equemene | from numpy.random import randint as nprnd |
22 | 102 | equemene | import sys |
23 | 102 | equemene | import getopt |
24 | 102 | equemene | import time |
25 | 102 | equemene | import itertools |
26 | 102 | equemene | from socket import gethostname |
27 | 102 | equemene | |
28 | 104 | equemene | class PenStacle: |
29 | 104 | equemene | """Pentacle of Statistics from data"""
|
30 | 104 | equemene | Avg=0
|
31 | 104 | equemene | Med=0
|
32 | 104 | equemene | Std=0
|
33 | 104 | equemene | Min=0
|
34 | 104 | equemene | Max=0
|
35 | 104 | equemene | def __init__(self,Data): |
36 | 104 | equemene | self.Avg=numpy.average(Data)
|
37 | 104 | equemene | self.Med=numpy.median(Data)
|
38 | 104 | equemene | self.Std=numpy.std(Data)
|
39 | 104 | equemene | self.Max=numpy.max(Data)
|
40 | 104 | equemene | self.Min=numpy.min(Data)
|
41 | 104 | equemene | def display(self): |
42 | 127 | equemene | print("%s %s %s %s %s" % (self.Avg,self.Med,self.Std,self.Min,self.Max)) |
43 | 104 | equemene | |
44 | 104 | equemene | class Experience: |
45 | 104 | equemene | """Metrology for experiences"""
|
46 | 104 | equemene | DeviceStyle=''
|
47 | 104 | equemene | DeviceId=0
|
48 | 104 | equemene | AvgD=0
|
49 | 104 | equemene | MedD=0
|
50 | 104 | equemene | StdD=0
|
51 | 104 | equemene | MinD=0
|
52 | 104 | equemene | MaxD=0
|
53 | 104 | equemene | AvgR=0
|
54 | 104 | equemene | MedR=0
|
55 | 104 | equemene | StdR=0
|
56 | 104 | equemene | MinR=0
|
57 | 104 | equemene | MaxR=0
|
58 | 104 | equemene | def __init__(self,DeviceStyle,DeviceId,Iterations): |
59 | 104 | equemene | self.DeviceStyle=DeviceStyle
|
60 | 104 | equemene | self.DeviceId=DeviceId
|
61 | 104 | equemene | self.Iterations
|
62 | 104 | equemene | |
63 | 104 | equemene | def Metrology(self,Data): |
64 | 104 | equemene | Duration=PenStacle(Data) |
65 | 104 | equemene | Rate=PenStacle(Iterations/Data) |
66 | 127 | equemene | print("Duration %s" % Duration)
|
67 | 127 | equemene | print("Rate %s" % Rate)
|
68 | 104 | equemene | |
69 | 105 | equemene | |
70 | 105 | equemene | |
71 | 103 | equemene | def DictionariesAPI(): |
72 | 103 | equemene | Marsaglia={'CONG':0,'SHR3':1,'MWC':2,'KISS':3} |
73 | 103 | equemene | Computing={'INT32':0,'INT64':1,'FP32':2,'FP64':3} |
74 | 181 | equemene | Test={True:1,False:0} |
75 | 181 | equemene | return(Marsaglia,Computing,Test)
|
76 | 103 | equemene | |
77 | 102 | equemene | # find prime factors of a number
|
78 | 102 | equemene | # Get for WWW :
|
79 | 102 | equemene | # http://pythonism.wordpress.com/2008/05/17/looking-at-factorisation-in-python/
|
80 | 102 | equemene | def PrimeFactors(x): |
81 | 102 | equemene | |
82 | 102 | equemene | factorlist=numpy.array([]).astype('uint32')
|
83 | 102 | equemene | loop=2
|
84 | 102 | equemene | while loop<=x:
|
85 | 102 | equemene | if x%loop==0: |
86 | 102 | equemene | x/=loop |
87 | 102 | equemene | factorlist=numpy.append(factorlist,[loop]) |
88 | 102 | equemene | else:
|
89 | 102 | equemene | loop+=1
|
90 | 102 | equemene | return factorlist
|
91 | 102 | equemene | |
92 | 102 | equemene | # Try to find the best thread number in Hybrid approach (Blocks&Threads)
|
93 | 102 | equemene | # output is thread number
|
94 | 102 | equemene | def BestThreadsNumber(jobs): |
95 | 102 | equemene | factors=PrimeFactors(jobs) |
96 | 102 | equemene | matrix=numpy.append([factors],[factors[::-1]],axis=0) |
97 | 102 | equemene | threads=1
|
98 | 102 | equemene | for factor in matrix.transpose().ravel(): |
99 | 102 | equemene | threads=threads*factor |
100 | 102 | equemene | if threads*threads>jobs or threads>512: |
101 | 102 | equemene | break
|
102 | 102 | equemene | return(long(threads)) |
103 | 102 | equemene | |
104 | 102 | equemene | # Predicted Amdahl Law (Reduced with s=1-p)
|
105 | 102 | equemene | def AmdahlR(N, T1, p): |
106 | 102 | equemene | return (T1*(1-p+p/N)) |
107 | 102 | equemene | |
108 | 102 | equemene | # Predicted Amdahl Law
|
109 | 102 | equemene | def Amdahl(N, T1, s, p): |
110 | 102 | equemene | return (T1*(s+p/N))
|
111 | 102 | equemene | |
112 | 102 | equemene | # Predicted Mylq Law with first order
|
113 | 102 | equemene | def Mylq(N, T1,s,c,p): |
114 | 102 | equemene | return (T1*(s+p/N)+c*N)
|
115 | 102 | equemene | |
116 | 102 | equemene | # Predicted Mylq Law with second order
|
117 | 102 | equemene | def Mylq2(N, T1,s,c1,c2,p): |
118 | 102 | equemene | return (T1*(s+p/N)+c1*N+c2*N*N)
|
119 | 102 | equemene | |
120 | 103 | equemene | def KernelCodeCuda(): |
121 | 103 | equemene | KERNEL_CODE_CUDA="""
|
122 | 102 | equemene | #define TCONG 0
|
123 | 102 | equemene | #define TSHR3 1
|
124 | 102 | equemene | #define TMWC 2
|
125 | 102 | equemene | #define TKISS 3
|
126 | 102 | equemene |
|
127 | 102 | equemene | #define TINT32 0
|
128 | 102 | equemene | #define TINT64 1
|
129 | 102 | equemene | #define TFP32 2
|
130 | 102 | equemene | #define TFP64 3
|
131 | 102 | equemene |
|
132 | 181 | equemene | #define IFTHEN 1
|
133 | 181 | equemene |
|
134 | 102 | equemene | // Marsaglia RNG very simple implementation
|
135 | 102 | equemene |
|
136 | 102 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
137 | 102 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
138 | 102 | equemene | #define MWC (znew+wnew)
|
139 | 102 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
140 | 102 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
141 | 102 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
142 | 102 | equemene |
|
143 | 102 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
144 | 102 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
145 | 102 | equemene | #define SHR3fp SHR3 * 2.328306435454494e-10f
|
146 | 102 | equemene | #define CONGfp CONG * 2.328306435454494e-10f
|
147 | 102 | equemene |
|
148 | 102 | equemene | __device__ ulong MainLoop(ulong iterations,uint seed_w,uint seed_z,size_t work)
|
149 | 102 | equemene | {
|
150 | 102 | equemene |
|
151 | 102 | equemene | #if TRNG == TCONG
|
152 | 102 | equemene | uint jcong=seed_z+work;
|
153 | 102 | equemene | #elif TRNG == TSHR3
|
154 | 102 | equemene | uint jsr=seed_w+work;
|
155 | 102 | equemene | #elif TRNG == TMWC
|
156 | 102 | equemene | uint z=seed_z+work;
|
157 | 102 | equemene | uint w=seed_w+work;
|
158 | 102 | equemene | #elif TRNG == TKISS
|
159 | 102 | equemene | uint jcong=seed_z+work;
|
160 | 102 | equemene | uint jsr=seed_w+work;
|
161 | 102 | equemene | uint z=seed_z-work;
|
162 | 102 | equemene | uint w=seed_w-work;
|
163 | 102 | equemene | #endif
|
164 | 102 | equemene |
|
165 | 102 | equemene | ulong total=0;
|
166 | 102 | equemene |
|
167 | 102 | equemene | for (ulong i=0;i<iterations;i++) {
|
168 | 102 | equemene |
|
169 | 102 | equemene | #if TYPE == TINT32
|
170 | 102 | equemene | #define THEONE 1073741824
|
171 | 102 | equemene | #if TRNG == TCONG
|
172 | 102 | equemene | uint x=CONG>>17 ;
|
173 | 102 | equemene | uint y=CONG>>17 ;
|
174 | 102 | equemene | #elif TRNG == TSHR3
|
175 | 102 | equemene | uint x=SHR3>>17 ;
|
176 | 102 | equemene | uint y=SHR3>>17 ;
|
177 | 102 | equemene | #elif TRNG == TMWC
|
178 | 102 | equemene | uint x=MWC>>17 ;
|
179 | 102 | equemene | uint y=MWC>>17 ;
|
180 | 102 | equemene | #elif TRNG == TKISS
|
181 | 102 | equemene | uint x=KISS>>17 ;
|
182 | 102 | equemene | uint y=KISS>>17 ;
|
183 | 102 | equemene | #endif
|
184 | 102 | equemene | #elif TYPE == TINT64
|
185 | 102 | equemene | #define THEONE 4611686018427387904
|
186 | 102 | equemene | #if TRNG == TCONG
|
187 | 102 | equemene | ulong x=(ulong)(CONG>>1) ;
|
188 | 102 | equemene | ulong y=(ulong)(CONG>>1) ;
|
189 | 102 | equemene | #elif TRNG == TSHR3
|
190 | 102 | equemene | ulong x=(ulong)(SHR3>>1) ;
|
191 | 102 | equemene | ulong y=(ulong)(SHR3>>1) ;
|
192 | 102 | equemene | #elif TRNG == TMWC
|
193 | 102 | equemene | ulong x=(ulong)(MWC>>1) ;
|
194 | 102 | equemene | ulong y=(ulong)(MWC>>1) ;
|
195 | 102 | equemene | #elif TRNG == TKISS
|
196 | 102 | equemene | ulong x=(ulong)(KISS>>1) ;
|
197 | 102 | equemene | ulong y=(ulong)(KISS>>1) ;
|
198 | 102 | equemene | #endif
|
199 | 102 | equemene | #elif TYPE == TFP32
|
200 | 102 | equemene | #define THEONE 1.0f
|
201 | 102 | equemene | #if TRNG == TCONG
|
202 | 102 | equemene | float x=CONGfp ;
|
203 | 102 | equemene | float y=CONGfp ;
|
204 | 102 | equemene | #elif TRNG == TSHR3
|
205 | 102 | equemene | float x=SHR3fp ;
|
206 | 102 | equemene | float y=SHR3fp ;
|
207 | 102 | equemene | #elif TRNG == TMWC
|
208 | 102 | equemene | float x=MWCfp ;
|
209 | 102 | equemene | float y=MWCfp ;
|
210 | 102 | equemene | #elif TRNG == TKISS
|
211 | 102 | equemene | float x=KISSfp ;
|
212 | 102 | equemene | float y=KISSfp ;
|
213 | 102 | equemene | #endif
|
214 | 102 | equemene | #elif TYPE == TFP64
|
215 | 102 | equemene | #define THEONE 1.0f
|
216 | 102 | equemene | #if TRNG == TCONG
|
217 | 102 | equemene | double x=(double)CONGfp ;
|
218 | 102 | equemene | double y=(double)CONGfp ;
|
219 | 102 | equemene | #elif TRNG == TSHR3
|
220 | 102 | equemene | double x=(double)SHR3fp ;
|
221 | 102 | equemene | double y=(double)SHR3fp ;
|
222 | 102 | equemene | #elif TRNG == TMWC
|
223 | 102 | equemene | double x=(double)MWCfp ;
|
224 | 102 | equemene | double y=(double)MWCfp ;
|
225 | 102 | equemene | #elif TRNG == TKISS
|
226 | 102 | equemene | double x=(double)KISSfp ;
|
227 | 102 | equemene | double y=(double)KISSfp ;
|
228 | 102 | equemene | #endif
|
229 | 102 | equemene | #endif
|
230 | 102 | equemene |
|
231 | 181 | equemene | #if TEST == IFTHEN
|
232 | 181 | equemene | if ((x*x+y*y) <=THEONE) {
|
233 | 181 | equemene | total+=1;
|
234 | 181 | equemene | }
|
235 | 181 | equemene | #else
|
236 | 102 | equemene | ulong inside=((x*x+y*y) <= THEONE) ? 1:0;
|
237 | 102 | equemene | total+=inside;
|
238 | 181 | equemene | #endif
|
239 | 102 | equemene | }
|
240 | 102 | equemene |
|
241 | 102 | equemene | return(total);
|
242 | 102 | equemene | }
|
243 | 102 | equemene |
|
244 | 102 | equemene | __global__ void MainLoopBlocks(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
245 | 102 | equemene | {
|
246 | 102 | equemene | ulong total=MainLoop(iterations,seed_z,seed_w,blockIdx.x);
|
247 | 102 | equemene | s[blockIdx.x]=total;
|
248 | 102 | equemene | __syncthreads();
|
249 | 102 | equemene |
|
250 | 102 | equemene | }
|
251 | 102 | equemene |
|
252 | 102 | equemene | __global__ void MainLoopThreads(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
253 | 102 | equemene | {
|
254 | 102 | equemene | ulong total=MainLoop(iterations,seed_z,seed_w,threadIdx.x);
|
255 | 102 | equemene | s[threadIdx.x]=total;
|
256 | 102 | equemene | __syncthreads();
|
257 | 102 | equemene |
|
258 | 102 | equemene | }
|
259 | 102 | equemene |
|
260 | 102 | equemene | __global__ void MainLoopHybrid(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
261 | 102 | equemene | {
|
262 | 102 | equemene | ulong total=MainLoop(iterations,seed_z,seed_w,blockDim.x*blockIdx.x+threadIdx.x);
|
263 | 102 | equemene | s[blockDim.x*blockIdx.x+threadIdx.x]=total;
|
264 | 102 | equemene | __syncthreads();
|
265 | 102 | equemene | }
|
266 | 102 | equemene |
|
267 | 102 | equemene | """
|
268 | 103 | equemene | return(KERNEL_CODE_CUDA)
|
269 | 102 | equemene | |
270 | 103 | equemene | def KernelCodeOpenCL(): |
271 | 103 | equemene | KERNEL_CODE_OPENCL="""
|
272 | 102 | equemene | #define TCONG 0
|
273 | 102 | equemene | #define TSHR3 1
|
274 | 102 | equemene | #define TMWC 2
|
275 | 102 | equemene | #define TKISS 3
|
276 | 102 | equemene |
|
277 | 102 | equemene | #define TINT32 0
|
278 | 102 | equemene | #define TINT64 1
|
279 | 102 | equemene | #define TFP32 2
|
280 | 102 | equemene | #define TFP64 3
|
281 | 102 | equemene |
|
282 | 181 | equemene | #define IFTHEN 1
|
283 | 181 | equemene |
|
284 | 102 | equemene | // Marsaglia RNG very simple implementation
|
285 | 102 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
286 | 102 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
287 | 102 | equemene |
|
288 | 102 | equemene | #define MWC (znew+wnew)
|
289 | 102 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
290 | 102 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
291 | 102 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
292 | 102 | equemene |
|
293 | 102 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
294 | 102 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
295 | 102 | equemene | #define CONGfp CONG * 2.328306435454494e-10f
|
296 | 102 | equemene | #define SHR3fp SHR3 * 2.328306435454494e-10f
|
297 | 102 | equemene |
|
298 | 102 | equemene | ulong MainLoop(ulong iterations,uint seed_z,uint seed_w,size_t work)
|
299 | 102 | equemene | {
|
300 | 102 | equemene |
|
301 | 102 | equemene | #if TRNG == TCONG
|
302 | 102 | equemene | uint jcong=seed_z+work;
|
303 | 102 | equemene | #elif TRNG == TSHR3
|
304 | 102 | equemene | uint jsr=seed_w+work;
|
305 | 102 | equemene | #elif TRNG == TMWC
|
306 | 102 | equemene | uint z=seed_z+work;
|
307 | 102 | equemene | uint w=seed_w+work;
|
308 | 102 | equemene | #elif TRNG == TKISS
|
309 | 102 | equemene | uint jcong=seed_z+work;
|
310 | 102 | equemene | uint jsr=seed_w+work;
|
311 | 102 | equemene | uint z=seed_z-work;
|
312 | 102 | equemene | uint w=seed_w-work;
|
313 | 102 | equemene | #endif
|
314 | 102 | equemene |
|
315 | 102 | equemene | ulong total=0;
|
316 | 102 | equemene |
|
317 | 102 | equemene | for (ulong i=0;i<iterations;i++) {
|
318 | 102 | equemene |
|
319 | 102 | equemene | #if TYPE == TINT32
|
320 | 102 | equemene | #define THEONE 1073741824
|
321 | 102 | equemene | #if TRNG == TCONG
|
322 | 102 | equemene | uint x=CONG>>17 ;
|
323 | 102 | equemene | uint y=CONG>>17 ;
|
324 | 102 | equemene | #elif TRNG == TSHR3
|
325 | 102 | equemene | uint x=SHR3>>17 ;
|
326 | 102 | equemene | uint y=SHR3>>17 ;
|
327 | 102 | equemene | #elif TRNG == TMWC
|
328 | 102 | equemene | uint x=MWC>>17 ;
|
329 | 102 | equemene | uint y=MWC>>17 ;
|
330 | 102 | equemene | #elif TRNG == TKISS
|
331 | 102 | equemene | uint x=KISS>>17 ;
|
332 | 102 | equemene | uint y=KISS>>17 ;
|
333 | 102 | equemene | #endif
|
334 | 102 | equemene | #elif TYPE == TINT64
|
335 | 102 | equemene | #define THEONE 4611686018427387904
|
336 | 102 | equemene | #if TRNG == TCONG
|
337 | 102 | equemene | ulong x=(ulong)(CONG>>1) ;
|
338 | 102 | equemene | ulong y=(ulong)(CONG>>1) ;
|
339 | 102 | equemene | #elif TRNG == TSHR3
|
340 | 102 | equemene | ulong x=(ulong)(SHR3>>1) ;
|
341 | 102 | equemene | ulong y=(ulong)(SHR3>>1) ;
|
342 | 102 | equemene | #elif TRNG == TMWC
|
343 | 102 | equemene | ulong x=(ulong)(MWC>>1) ;
|
344 | 102 | equemene | ulong y=(ulong)(MWC>>1) ;
|
345 | 102 | equemene | #elif TRNG == TKISS
|
346 | 102 | equemene | ulong x=(ulong)(KISS>>1) ;
|
347 | 102 | equemene | ulong y=(ulong)(KISS>>1) ;
|
348 | 102 | equemene | #endif
|
349 | 102 | equemene | #elif TYPE == TFP32
|
350 | 102 | equemene | #define THEONE 1.0f
|
351 | 102 | equemene | #if TRNG == TCONG
|
352 | 102 | equemene | float x=CONGfp ;
|
353 | 102 | equemene | float y=CONGfp ;
|
354 | 102 | equemene | #elif TRNG == TSHR3
|
355 | 102 | equemene | float x=SHR3fp ;
|
356 | 102 | equemene | float y=SHR3fp ;
|
357 | 102 | equemene | #elif TRNG == TMWC
|
358 | 102 | equemene | float x=MWCfp ;
|
359 | 102 | equemene | float y=MWCfp ;
|
360 | 102 | equemene | #elif TRNG == TKISS
|
361 | 102 | equemene | float x=KISSfp ;
|
362 | 102 | equemene | float y=KISSfp ;
|
363 | 102 | equemene | #endif
|
364 | 102 | equemene | #elif TYPE == TFP64
|
365 | 102 | equemene | #pragma OPENCL EXTENSION cl_khr_fp64: enable
|
366 | 102 | equemene | #define THEONE 1.0f
|
367 | 102 | equemene | #if TRNG == TCONG
|
368 | 102 | equemene | double x=(double)CONGfp ;
|
369 | 102 | equemene | double y=(double)CONGfp ;
|
370 | 102 | equemene | #elif TRNG == TSHR3
|
371 | 102 | equemene | double x=(double)SHR3fp ;
|
372 | 102 | equemene | double y=(double)SHR3fp ;
|
373 | 102 | equemene | #elif TRNG == TMWC
|
374 | 102 | equemene | double x=(double)MWCfp ;
|
375 | 102 | equemene | double y=(double)MWCfp ;
|
376 | 102 | equemene | #elif TRNG == TKISS
|
377 | 102 | equemene | double x=(double)KISSfp ;
|
378 | 102 | equemene | double y=(double)KISSfp ;
|
379 | 102 | equemene | #endif
|
380 | 102 | equemene | #endif
|
381 | 102 | equemene |
|
382 | 181 | equemene | #if TEST == IFTHEN
|
383 | 181 | equemene | if ((x*x+y*y) <= THEONE) {
|
384 | 181 | equemene | total+=1;
|
385 | 181 | equemene | }
|
386 | 181 | equemene | #else
|
387 | 102 | equemene | ulong inside=((x*x+y*y) <= THEONE) ? 1:0;
|
388 | 102 | equemene | total+=inside;
|
389 | 181 | equemene | #endif
|
390 | 102 | equemene | }
|
391 | 102 | equemene |
|
392 | 102 | equemene | return(total);
|
393 | 102 | equemene | }
|
394 | 102 | equemene |
|
395 | 102 | equemene | __kernel void MainLoopGlobal(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
396 | 102 | equemene | {
|
397 | 102 | equemene | ulong total=MainLoop(iterations,seed_z,seed_w,get_global_id(0));
|
398 | 102 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
399 | 102 | equemene | s[get_global_id(0)]=total;
|
400 | 102 | equemene | }
|
401 | 102 | equemene |
|
402 | 102 | equemene | __kernel void MainLoopLocal(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
403 | 102 | equemene | {
|
404 | 102 | equemene | ulong total=MainLoop(iterations,seed_z,seed_w,get_local_id(0));
|
405 | 102 | equemene | barrier(CLK_LOCAL_MEM_FENCE);
|
406 | 102 | equemene | s[get_local_id(0)]=total;
|
407 | 102 | equemene | }
|
408 | 102 | equemene |
|
409 | 102 | equemene | __kernel void MainLoopHybrid(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
410 | 102 | equemene | {
|
411 | 102 | equemene | ulong total=MainLoop(iterations,seed_z,seed_w,get_global_id(0));
|
412 | 102 | equemene | barrier(CLK_GLOBAL_MEM_FENCE || CLK_LOCAL_MEM_FENCE);
|
413 | 102 | equemene | s[get_global_id(0)]=total;
|
414 | 102 | equemene | }
|
415 | 102 | equemene |
|
416 | 102 | equemene | """
|
417 | 103 | equemene | return(KERNEL_CODE_OPENCL)
|
418 | 103 | equemene | |
419 | 122 | equemene | def MetropolisCuda(InputCU): |
420 | 102 | equemene | |
421 | 127 | equemene | print("Inside ",InputCU)
|
422 | 122 | equemene | |
423 | 122 | equemene | iterations=InputCU['Iterations']
|
424 | 122 | equemene | steps=InputCU['Steps']
|
425 | 122 | equemene | blocks=InputCU['Blocks']
|
426 | 122 | equemene | threads=InputCU['Threads']
|
427 | 122 | equemene | Device=InputCU['Device']
|
428 | 122 | equemene | RNG=InputCU['RNG']
|
429 | 122 | equemene | ValueType=InputCU['ValueType']
|
430 | 181 | equemene | TestType=InputCU['IfThen']
|
431 | 122 | equemene | |
432 | 181 | equemene | Marsaglia,Computing,Test=DictionariesAPI() |
433 | 103 | equemene | |
434 | 122 | equemene | try:
|
435 | 122 | equemene | # For PyCUDA import
|
436 | 122 | equemene | import pycuda.driver as cuda |
437 | 122 | equemene | from pycuda.compiler import SourceModule |
438 | 122 | equemene | |
439 | 122 | equemene | cuda.init() |
440 | 122 | equemene | for Id in range(cuda.Device.count()): |
441 | 122 | equemene | if Id==Device:
|
442 | 122 | equemene | XPU=cuda.Device(Id) |
443 | 127 | equemene | print("GPU selected %s" % XPU.name())
|
444 | 122 | equemene | print
|
445 | 122 | equemene | |
446 | 122 | equemene | except ImportError: |
447 | 127 | equemene | print("Platform does not seem to support CUDA")
|
448 | 123 | equemene | |
449 | 122 | equemene | circle=numpy.zeros(blocks*threads).astype(numpy.uint64) |
450 | 102 | equemene | circleCU = cuda.InOut(circle) |
451 | 123 | equemene | #circleCU = cuda.mem_alloc(circle.size*circle.dtype.itemize)
|
452 | 123 | equemene | #cuda.memcpy_htod(circleCU, circle)
|
453 | 102 | equemene | |
454 | 152 | equemene | Context=XPU.make_context() |
455 | 152 | equemene | |
456 | 102 | equemene | try:
|
457 | 152 | equemene | #mod = SourceModule(KernelCodeCuda(),options=['--compiler-options','-DTRNG=%i -DTYPE=%s' % (Marsaglia[RNG],Computing[ValueType])])
|
458 | 177 | equemene | #mod = SourceModule(KernelCodeCuda(),nvcc='nvcc',keep=True)
|
459 | 177 | equemene | # Needed to set the compiler via ccbin for CUDA9 implementation
|
460 | 181 | equemene | mod = SourceModule(KernelCodeCuda(),options=['-ccbin','clang-3.8','--compiler-options','-DTRNG=%i' % Marsaglia[RNG],'-DTYPE=%s' % Computing[ValueType],'-DTEST=%s' % Test[TestType]],keep=True) |
461 | 102 | equemene | except:
|
462 | 177 | equemene | print("Compilation seems to break")
|
463 | 152 | equemene | |
464 | 102 | equemene | MetropolisBlocksCU=mod.get_function("MainLoopBlocks")
|
465 | 123 | equemene | MetropolisThreadsCU=mod.get_function("MainLoopThreads")
|
466 | 102 | equemene | MetropolisHybridCU=mod.get_function("MainLoopHybrid")
|
467 | 123 | equemene | |
468 | 102 | equemene | MyDuration=numpy.zeros(steps) |
469 | 102 | equemene | |
470 | 122 | equemene | jobs=blocks*threads; |
471 | 102 | equemene | |
472 | 122 | equemene | iterationsCU=numpy.uint64(iterations/jobs) |
473 | 122 | equemene | if iterations%jobs!=0: |
474 | 123 | equemene | iterationsCU+=numpy.uint64(1)
|
475 | 122 | equemene | |
476 | 102 | equemene | for i in range(steps): |
477 | 122 | equemene | start_time=time.time() |
478 | 122 | equemene | |
479 | 123 | equemene | try:
|
480 | 123 | equemene | MetropolisHybridCU(circleCU, |
481 | 123 | equemene | numpy.uint64(iterationsCU), |
482 | 123 | equemene | numpy.uint32(nprnd(2**32)), |
483 | 123 | equemene | numpy.uint32(nprnd(2**32)), |
484 | 123 | equemene | grid=(blocks,1),block=(threads,1,1)) |
485 | 123 | equemene | except:
|
486 | 127 | equemene | print("Crash during CUDA call")
|
487 | 102 | equemene | |
488 | 122 | equemene | elapsed = time.time()-start_time |
489 | 127 | equemene | print("(Blocks/Threads)=(%i,%i) method done in %.2f s..." % (blocks,threads,elapsed))
|
490 | 122 | equemene | |
491 | 102 | equemene | MyDuration[i]=elapsed |
492 | 102 | equemene | |
493 | 122 | equemene | OutputCU={'Inside':sum(circle),'NewIterations':numpy.uint64(iterationsCU*jobs),'Duration':MyDuration} |
494 | 127 | equemene | print(OutputCU) |
495 | 152 | equemene | Context.pop() |
496 | 122 | equemene | |
497 | 177 | equemene | Context.detach() |
498 | 122 | equemene | return(OutputCU)
|
499 | 102 | equemene | |
500 | 106 | equemene | def MetropolisOpenCL(InputCL): |
501 | 103 | equemene | |
502 | 103 | equemene | import pyopencl as cl |
503 | 105 | equemene | |
504 | 127 | equemene | print("Inside ",InputCL)
|
505 | 107 | equemene | |
506 | 106 | equemene | iterations=InputCL['Iterations']
|
507 | 106 | equemene | steps=InputCL['Steps']
|
508 | 106 | equemene | blocks=InputCL['Blocks']
|
509 | 106 | equemene | threads=InputCL['Threads']
|
510 | 106 | equemene | Device=InputCL['Device']
|
511 | 181 | equemene | RNG=InputCL['RNG']
|
512 | 106 | equemene | ValueType=InputCL['ValueType']
|
513 | 181 | equemene | TestType=InputCL['IfThen']
|
514 | 181 | equemene | |
515 | 181 | equemene | Marsaglia,Computing,Test=DictionariesAPI() |
516 | 103 | equemene | |
517 | 102 | equemene | # Initialisation des variables en les CASTant correctement
|
518 | 122 | equemene | Id=0
|
519 | 102 | equemene | HasXPU=False
|
520 | 102 | equemene | for platform in cl.get_platforms(): |
521 | 102 | equemene | for device in platform.get_devices(): |
522 | 102 | equemene | if Id==Device:
|
523 | 102 | equemene | XPU=device |
524 | 127 | equemene | print("CPU/GPU selected: ",device.name.lstrip())
|
525 | 102 | equemene | HasXPU=True
|
526 | 102 | equemene | Id+=1
|
527 | 102 | equemene | |
528 | 102 | equemene | if HasXPU==False: |
529 | 127 | equemene | print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
530 | 102 | equemene | sys.exit() |
531 | 102 | equemene | |
532 | 102 | equemene | # Je cree le contexte et la queue pour son execution
|
533 | 106 | equemene | try:
|
534 | 106 | equemene | ctx = cl.Context([XPU]) |
535 | 106 | equemene | queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
536 | 106 | equemene | except:
|
537 | 127 | equemene | print("Crash during context creation")
|
538 | 102 | equemene | |
539 | 102 | equemene | # Je recupere les flag possibles pour les buffers
|
540 | 102 | equemene | mf = cl.mem_flags |
541 | 102 | equemene | |
542 | 106 | equemene | circle=numpy.zeros(blocks*threads).astype(numpy.uint64) |
543 | 102 | equemene | circleCL = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=circle) |
544 | 106 | equemene | |
545 | 181 | equemene | MetropolisCL = cl.Program(ctx,KernelCodeOpenCL()).build( options = "-cl-mad-enable -cl-fast-relaxed-math -DTRNG=%i -DTYPE=%s -DTEST=%s" % (Marsaglia[RNG],Computing[ValueType],Test[TestType]))
|
546 | 102 | equemene | |
547 | 102 | equemene | MyDuration=numpy.zeros(steps) |
548 | 102 | equemene | |
549 | 102 | equemene | jobs=blocks*threads; |
550 | 102 | equemene | |
551 | 106 | equemene | iterationsCL=numpy.uint64(iterations/jobs) |
552 | 106 | equemene | if iterations%jobs!=0: |
553 | 106 | equemene | iterationsCL+=1
|
554 | 102 | equemene | |
555 | 102 | equemene | for i in range(steps): |
556 | 102 | equemene | start_time=time.time() |
557 | 102 | equemene | if threads == 1: |
558 | 102 | equemene | CLLaunch=MetropolisCL.MainLoopGlobal(queue,(blocks,),None,
|
559 | 102 | equemene | circleCL, |
560 | 102 | equemene | numpy.uint64(iterationsCL), |
561 | 102 | equemene | numpy.uint32(nprnd(2**32)), |
562 | 102 | equemene | numpy.uint32(nprnd(2**32))) |
563 | 102 | equemene | else:
|
564 | 102 | equemene | CLLaunch=MetropolisCL.MainLoopHybrid(queue,(jobs,),(threads,), |
565 | 102 | equemene | circleCL, |
566 | 102 | equemene | numpy.uint64(iterationsCL), |
567 | 102 | equemene | numpy.uint32(nprnd(2**32)), |
568 | 102 | equemene | numpy.uint32(nprnd(2**32))) |
569 | 102 | equemene | |
570 | 102 | equemene | CLLaunch.wait() |
571 | 102 | equemene | cl.enqueue_copy(queue, circle, circleCL).wait() |
572 | 102 | equemene | |
573 | 102 | equemene | elapsed = time.time()-start_time |
574 | 127 | equemene | print("(Blocks/Threads)=(%i,%i) method done in %.2f s..." % (blocks,threads,elapsed))
|
575 | 102 | equemene | |
576 | 104 | equemene | # Elapsed method based on CLLaunch doesn't work for Beignet OpenCL
|
577 | 102 | equemene | # elapsed = 1e-9*(CLLaunch.profile.end - CLLaunch.profile.start)
|
578 | 102 | equemene | |
579 | 102 | equemene | # print circle,numpy.mean(circle),numpy.median(circle),numpy.std(circle)
|
580 | 102 | equemene | MyDuration[i]=elapsed |
581 | 104 | equemene | # AllPi=4./numpy.float32(iterationsCL)*circle.astype(numpy.float32)
|
582 | 104 | equemene | # MyPi[i]=numpy.median(AllPi)
|
583 | 102 | equemene | # print MyPi[i],numpy.std(AllPi),MyDuration[i]
|
584 | 102 | equemene | |
585 | 102 | equemene | circleCL.release() |
586 | 102 | equemene | |
587 | 106 | equemene | OutputCL={'Inside':sum(circle),'NewIterations':numpy.uint64(iterationsCL*jobs),'Duration':MyDuration} |
588 | 127 | equemene | print(OutputCL) |
589 | 106 | equemene | return(OutputCL)
|
590 | 102 | equemene | |
591 | 102 | equemene | |
592 | 102 | equemene | def FitAndPrint(N,D,Curves): |
593 | 102 | equemene | |
594 | 102 | equemene | from scipy.optimize import curve_fit |
595 | 102 | equemene | import matplotlib.pyplot as plt |
596 | 102 | equemene | |
597 | 102 | equemene | try:
|
598 | 102 | equemene | coeffs_Amdahl, matcov_Amdahl = curve_fit(Amdahl, N, D) |
599 | 102 | equemene | |
600 | 102 | equemene | D_Amdahl=Amdahl(N,coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
601 | 102 | equemene | coeffs_Amdahl[1]=coeffs_Amdahl[1]*coeffs_Amdahl[0]/D[0] |
602 | 102 | equemene | coeffs_Amdahl[2]=coeffs_Amdahl[2]*coeffs_Amdahl[0]/D[0] |
603 | 102 | equemene | coeffs_Amdahl[0]=D[0] |
604 | 127 | equemene | print("Amdahl Normalized: T=%.2f(%.6f+%.6f/N)" % (coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2])) |
605 | 102 | equemene | except:
|
606 | 127 | equemene | print("Impossible to fit for Amdahl law : only %i elements" % len(D)) |
607 | 102 | equemene | |
608 | 102 | equemene | try:
|
609 | 102 | equemene | coeffs_AmdahlR, matcov_AmdahlR = curve_fit(AmdahlR, N, D) |
610 | 102 | equemene | |
611 | 102 | equemene | D_AmdahlR=AmdahlR(N,coeffs_AmdahlR[0],coeffs_AmdahlR[1]) |
612 | 102 | equemene | coeffs_AmdahlR[1]=coeffs_AmdahlR[1]*coeffs_AmdahlR[0]/D[0] |
613 | 102 | equemene | coeffs_AmdahlR[0]=D[0] |
614 | 127 | equemene | print("Amdahl Reduced Normalized: T=%.2f(%.6f+%.6f/N)" % (coeffs_AmdahlR[0],1-coeffs_AmdahlR[1],coeffs_AmdahlR[1])) |
615 | 102 | equemene | |
616 | 102 | equemene | except:
|
617 | 127 | equemene | print("Impossible to fit for Reduced Amdahl law : only %i elements" % len(D)) |
618 | 102 | equemene | |
619 | 102 | equemene | try:
|
620 | 102 | equemene | coeffs_Mylq, matcov_Mylq = curve_fit(Mylq, N, D) |
621 | 102 | equemene | |
622 | 102 | equemene | coeffs_Mylq[1]=coeffs_Mylq[1]*coeffs_Mylq[0]/D[0] |
623 | 102 | equemene | # coeffs_Mylq[2]=coeffs_Mylq[2]*coeffs_Mylq[0]/D[0]
|
624 | 102 | equemene | coeffs_Mylq[3]=coeffs_Mylq[3]*coeffs_Mylq[0]/D[0] |
625 | 102 | equemene | coeffs_Mylq[0]=D[0] |
626 | 127 | equemene | print("Mylq Normalized : T=%.2f(%.6f+%.6f/N)+%.6f*N" % (coeffs_Mylq[0], |
627 | 102 | equemene | coeffs_Mylq[1],
|
628 | 102 | equemene | coeffs_Mylq[3],
|
629 | 127 | equemene | coeffs_Mylq[2]))
|
630 | 102 | equemene | D_Mylq=Mylq(N,coeffs_Mylq[0],coeffs_Mylq[1],coeffs_Mylq[2], |
631 | 102 | equemene | coeffs_Mylq[3])
|
632 | 102 | equemene | except:
|
633 | 127 | equemene | print("Impossible to fit for Mylq law : only %i elements" % len(D)) |
634 | 102 | equemene | |
635 | 102 | equemene | try:
|
636 | 102 | equemene | coeffs_Mylq2, matcov_Mylq2 = curve_fit(Mylq2, N, D) |
637 | 102 | equemene | |
638 | 102 | equemene | coeffs_Mylq2[1]=coeffs_Mylq2[1]*coeffs_Mylq2[0]/D[0] |
639 | 102 | equemene | # coeffs_Mylq2[2]=coeffs_Mylq2[2]*coeffs_Mylq2[0]/D[0]
|
640 | 102 | equemene | # coeffs_Mylq2[3]=coeffs_Mylq2[3]*coeffs_Mylq2[0]/D[0]
|
641 | 102 | equemene | coeffs_Mylq2[4]=coeffs_Mylq2[4]*coeffs_Mylq2[0]/D[0] |
642 | 102 | equemene | coeffs_Mylq2[0]=D[0] |
643 | 127 | equemene | print("Mylq 2nd order Normalized: T=%.2f(%.6f+%.6f/N)+%.6f*N+%.6f*N^2" % (coeffs_Mylq2[0],coeffs_Mylq2[1],coeffs_Mylq2[4],coeffs_Mylq2[2],coeffs_Mylq2[3])) |
644 | 102 | equemene | |
645 | 102 | equemene | except:
|
646 | 127 | equemene | print("Impossible to fit for 2nd order Mylq law : only %i elements" % len(D)) |
647 | 102 | equemene | |
648 | 102 | equemene | if Curves:
|
649 | 102 | equemene | plt.xlabel("Number of Threads/work Items")
|
650 | 102 | equemene | plt.ylabel("Total Elapsed Time")
|
651 | 102 | equemene | |
652 | 102 | equemene | Experience,=plt.plot(N,D,'ro')
|
653 | 102 | equemene | try:
|
654 | 102 | equemene | pAmdahl,=plt.plot(N,D_Amdahl,label="Loi de Amdahl")
|
655 | 102 | equemene | pMylq,=plt.plot(N,D_Mylq,label="Loi de Mylq")
|
656 | 102 | equemene | except:
|
657 | 127 | equemene | print("Fit curves seem not to be available")
|
658 | 102 | equemene | |
659 | 102 | equemene | plt.legend() |
660 | 102 | equemene | plt.show() |
661 | 102 | equemene | |
662 | 102 | equemene | if __name__=='__main__': |
663 | 103 | equemene | |
664 | 102 | equemene | # Set defaults values
|
665 | 102 | equemene | |
666 | 102 | equemene | # Id of Device : 1 is for first find !
|
667 | 102 | equemene | Device=1
|
668 | 102 | equemene | # GPU style can be Cuda (Nvidia implementation) or OpenCL
|
669 | 102 | equemene | GpuStyle='OpenCL'
|
670 | 102 | equemene | # Iterations is integer
|
671 | 104 | equemene | Iterations=10000000
|
672 | 102 | equemene | # BlocksBlocks in first number of Blocks to explore
|
673 | 102 | equemene | BlocksBegin=1
|
674 | 102 | equemene | # BlocksEnd is last number of Blocks to explore
|
675 | 152 | equemene | BlocksEnd=1
|
676 | 102 | equemene | # BlocksStep is the step of Blocks to explore
|
677 | 102 | equemene | BlocksStep=1
|
678 | 102 | equemene | # ThreadsBlocks in first number of Blocks to explore
|
679 | 102 | equemene | ThreadsBegin=1
|
680 | 102 | equemene | # ThreadsEnd is last number of Blocks to explore
|
681 | 102 | equemene | ThreadsEnd=1
|
682 | 102 | equemene | # ThreadsStep is the step of Blocks to explore
|
683 | 102 | equemene | ThreadsStep=1
|
684 | 102 | equemene | # Redo is the times to redo the test to improve metrology
|
685 | 102 | equemene | Redo=1
|
686 | 102 | equemene | # OutMetrology is method for duration estimation : False is GPU inside
|
687 | 102 | equemene | OutMetrology=False
|
688 | 102 | equemene | Metrology='InMetro'
|
689 | 102 | equemene | # Curves is True to print the curves
|
690 | 102 | equemene | Curves=False
|
691 | 102 | equemene | # Fit is True to print the curves
|
692 | 102 | equemene | Fit=False
|
693 | 181 | equemene | # Inside based on If
|
694 | 181 | equemene | IfThen=False
|
695 | 102 | equemene | # Marsaglia RNG
|
696 | 102 | equemene | RNG='MWC'
|
697 | 102 | equemene | # Value type : INT32, INT64, FP32, FP64
|
698 | 102 | equemene | ValueType='FP32'
|
699 | 102 | equemene | |
700 | 181 | equemene | HowToUse='%s -o (Out of Core Metrology) -c (Print Curves) -k (Case On IfThen) -d <DeviceId> -g <CUDA/OpenCL> -i <Iterations> -b <BlocksBegin> -e <BlocksEnd> -s <BlocksStep> -f <ThreadsFirst> -l <ThreadsLast> -t <ThreadssTep> -r <RedoToImproveStats> -m <SHR3/CONG/MWC/KISS> -v <INT32/INT64/FP32/FP64>'
|
701 | 102 | equemene | |
702 | 102 | equemene | try:
|
703 | 181 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hockg:i:b:e:s:f:l:t:r:d:m:v:",["gpustyle=","iterations=","blocksBegin=","blocksEnd=","blocksStep=","threadsFirst=","threadsLast=","threadssTep=","redo=","device=","marsaglia=","valuetype="]) |
704 | 102 | equemene | except getopt.GetoptError:
|
705 | 127 | equemene | print(HowToUse % sys.argv[0])
|
706 | 102 | equemene | sys.exit(2)
|
707 | 104 | equemene | |
708 | 104 | equemene | # List of Devices
|
709 | 104 | equemene | Devices=[] |
710 | 104 | equemene | Alu={} |
711 | 104 | equemene | |
712 | 102 | equemene | for opt, arg in opts: |
713 | 102 | equemene | if opt == '-h': |
714 | 127 | equemene | print(HowToUse % sys.argv[0])
|
715 | 102 | equemene | |
716 | 127 | equemene | print("\nInformations about devices detected under OpenCL API:")
|
717 | 102 | equemene | # For PyOpenCL import
|
718 | 102 | equemene | try:
|
719 | 102 | equemene | import pyopencl as cl |
720 | 122 | equemene | Id=0
|
721 | 102 | equemene | for platform in cl.get_platforms(): |
722 | 102 | equemene | for device in platform.get_devices(): |
723 | 138 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
724 | 157 | equemene | deviceType="xPU"
|
725 | 127 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
726 | 102 | equemene | Id=Id+1
|
727 | 102 | equemene | |
728 | 123 | equemene | except:
|
729 | 127 | equemene | print("Your platform does not seem to support OpenCL")
|
730 | 122 | equemene | |
731 | 127 | equemene | print("\nInformations about devices detected under CUDA API:")
|
732 | 122 | equemene | # For PyCUDA import
|
733 | 122 | equemene | try:
|
734 | 122 | equemene | import pycuda.driver as cuda |
735 | 122 | equemene | cuda.init() |
736 | 122 | equemene | for Id in range(cuda.Device.count()): |
737 | 122 | equemene | device=cuda.Device(Id) |
738 | 127 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
739 | 102 | equemene | print
|
740 | 123 | equemene | except:
|
741 | 127 | equemene | print("Your platform does not seem to support CUDA")
|
742 | 102 | equemene | |
743 | 122 | equemene | sys.exit() |
744 | 122 | equemene | |
745 | 122 | equemene | |
746 | 102 | equemene | elif opt == '-o': |
747 | 102 | equemene | OutMetrology=True
|
748 | 102 | equemene | Metrology='OutMetro'
|
749 | 102 | equemene | elif opt == '-c': |
750 | 102 | equemene | Curves=True
|
751 | 181 | equemene | elif opt == '-k': |
752 | 181 | equemene | IfThen=True
|
753 | 102 | equemene | elif opt in ("-d", "--device"): |
754 | 104 | equemene | Devices.append(int(arg))
|
755 | 102 | equemene | elif opt in ("-g", "--gpustyle"): |
756 | 102 | equemene | GpuStyle = arg |
757 | 102 | equemene | elif opt in ("-m", "--marsaglia"): |
758 | 102 | equemene | RNG = arg |
759 | 102 | equemene | elif opt in ("-v", "--valuetype"): |
760 | 102 | equemene | ValueType = arg |
761 | 102 | equemene | elif opt in ("-i", "--iterations"): |
762 | 102 | equemene | Iterations = numpy.uint64(arg) |
763 | 102 | equemene | elif opt in ("-b", "--blocksbegin"): |
764 | 102 | equemene | BlocksBegin = int(arg)
|
765 | 102 | equemene | elif opt in ("-e", "--blocksend"): |
766 | 102 | equemene | BlocksEnd = int(arg)
|
767 | 102 | equemene | elif opt in ("-s", "--blocksstep"): |
768 | 102 | equemene | BlocksStep = int(arg)
|
769 | 102 | equemene | elif opt in ("-f", "--threadsfirst"): |
770 | 102 | equemene | ThreadsBegin = int(arg)
|
771 | 102 | equemene | elif opt in ("-l", "--threadslast"): |
772 | 102 | equemene | ThreadsEnd = int(arg)
|
773 | 102 | equemene | elif opt in ("-t", "--threadsstep"): |
774 | 102 | equemene | ThreadsStep = int(arg)
|
775 | 102 | equemene | elif opt in ("-r", "--redo"): |
776 | 102 | equemene | Redo = int(arg)
|
777 | 102 | equemene | |
778 | 127 | equemene | print("Devices Identification : %s" % Devices)
|
779 | 127 | equemene | print("GpuStyle used : %s" % GpuStyle)
|
780 | 127 | equemene | print("Iterations : %s" % Iterations)
|
781 | 127 | equemene | print("Number of Blocks on begin : %s" % BlocksBegin)
|
782 | 127 | equemene | print("Number of Blocks on end : %s" % BlocksEnd)
|
783 | 127 | equemene | print("Step on Blocks : %s" % BlocksStep)
|
784 | 127 | equemene | print("Number of Threads on begin : %s" % ThreadsBegin)
|
785 | 127 | equemene | print("Number of Threads on end : %s" % ThreadsEnd)
|
786 | 127 | equemene | print("Step on Threads : %s" % ThreadsStep)
|
787 | 127 | equemene | print("Number of redo : %s" % Redo)
|
788 | 127 | equemene | print("Metrology done out of XPU : %r" % OutMetrology)
|
789 | 127 | equemene | print("Type of Marsaglia RNG used : %s" % RNG)
|
790 | 127 | equemene | print("Type of variable : %s" % ValueType)
|
791 | 102 | equemene | |
792 | 102 | equemene | if GpuStyle=='CUDA': |
793 | 102 | equemene | try:
|
794 | 102 | equemene | # For PyCUDA import
|
795 | 102 | equemene | import pycuda.driver as cuda |
796 | 122 | equemene | |
797 | 122 | equemene | cuda.init() |
798 | 122 | equemene | for Id in range(cuda.Device.count()): |
799 | 122 | equemene | device=cuda.Device(Id) |
800 | 127 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
801 | 122 | equemene | if Id in Devices: |
802 | 122 | equemene | Alu[Id]='GPU'
|
803 | 122 | equemene | |
804 | 102 | equemene | except ImportError: |
805 | 127 | equemene | print("Platform does not seem to support CUDA")
|
806 | 102 | equemene | |
807 | 102 | equemene | if GpuStyle=='OpenCL': |
808 | 102 | equemene | try:
|
809 | 102 | equemene | # For PyOpenCL import
|
810 | 102 | equemene | import pyopencl as cl |
811 | 122 | equemene | Id=0
|
812 | 102 | equemene | for platform in cl.get_platforms(): |
813 | 102 | equemene | for device in platform.get_devices(): |
814 | 138 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
815 | 152 | equemene | deviceType="xPU"
|
816 | 127 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
|
817 | 102 | equemene | |
818 | 104 | equemene | if Id in Devices: |
819 | 102 | equemene | # Set the Alu as detected Device Type
|
820 | 104 | equemene | Alu[Id]=deviceType |
821 | 102 | equemene | Id=Id+1
|
822 | 102 | equemene | except ImportError: |
823 | 127 | equemene | print("Platform does not seem to support OpenCL")
|
824 | 104 | equemene | |
825 | 127 | equemene | print(Devices,Alu) |
826 | 104 | equemene | |
827 | 127 | equemene | BlocksList=range(BlocksBegin,BlocksEnd+BlocksStep,BlocksStep)
|
828 | 127 | equemene | ThreadsList=range(ThreadsBegin,ThreadsEnd+ThreadsStep,ThreadsStep)
|
829 | 102 | equemene | |
830 | 102 | equemene | ExploredJobs=numpy.array([]).astype(numpy.uint32) |
831 | 102 | equemene | ExploredBlocks=numpy.array([]).astype(numpy.uint32) |
832 | 102 | equemene | ExploredThreads=numpy.array([]).astype(numpy.uint32) |
833 | 104 | equemene | avgD=numpy.array([]).astype(numpy.float32) |
834 | 104 | equemene | medD=numpy.array([]).astype(numpy.float32) |
835 | 104 | equemene | stdD=numpy.array([]).astype(numpy.float32) |
836 | 104 | equemene | minD=numpy.array([]).astype(numpy.float32) |
837 | 104 | equemene | maxD=numpy.array([]).astype(numpy.float32) |
838 | 104 | equemene | avgR=numpy.array([]).astype(numpy.float32) |
839 | 104 | equemene | medR=numpy.array([]).astype(numpy.float32) |
840 | 104 | equemene | stdR=numpy.array([]).astype(numpy.float32) |
841 | 104 | equemene | minR=numpy.array([]).astype(numpy.float32) |
842 | 104 | equemene | maxR=numpy.array([]).astype(numpy.float32) |
843 | 102 | equemene | |
844 | 102 | equemene | for Blocks,Threads in itertools.product(BlocksList,ThreadsList): |
845 | 102 | equemene | |
846 | 102 | equemene | # print Blocks,Threads
|
847 | 102 | equemene | circle=numpy.zeros(Blocks*Threads).astype(numpy.uint64) |
848 | 102 | equemene | ExploredJobs=numpy.append(ExploredJobs,Blocks*Threads) |
849 | 102 | equemene | ExploredBlocks=numpy.append(ExploredBlocks,Blocks) |
850 | 102 | equemene | ExploredThreads=numpy.append(ExploredThreads,Threads) |
851 | 102 | equemene | |
852 | 102 | equemene | if OutMetrology:
|
853 | 104 | equemene | DurationItem=numpy.array([]).astype(numpy.float32) |
854 | 104 | equemene | Duration=numpy.array([]).astype(numpy.float32) |
855 | 104 | equemene | Rate=numpy.array([]).astype(numpy.float32) |
856 | 102 | equemene | for i in range(Redo): |
857 | 102 | equemene | start=time.time() |
858 | 102 | equemene | if GpuStyle=='CUDA': |
859 | 102 | equemene | try:
|
860 | 122 | equemene | InputCU={} |
861 | 122 | equemene | InputCU['Iterations']=Iterations
|
862 | 122 | equemene | InputCU['Steps']=1 |
863 | 122 | equemene | InputCU['Blocks']=Blocks
|
864 | 122 | equemene | InputCU['Threads']=Threads
|
865 | 122 | equemene | InputCU['Device']=Devices[0] |
866 | 122 | equemene | InputCU['RNG']=RNG
|
867 | 122 | equemene | InputCU['ValueType']=ValueType
|
868 | 181 | equemene | InputCU['IfThen']=IfThen
|
869 | 122 | equemene | OutputCU=MetropolisCuda(InputCU) |
870 | 122 | equemene | Inside=OutputCU['Circle']
|
871 | 122 | equemene | NewIterations=OutputCU['NewIterations']
|
872 | 122 | equemene | Duration=OutputCU['Duration']
|
873 | 102 | equemene | except:
|
874 | 127 | equemene | print("Problem with (%i,%i) // computations on Cuda" % (Blocks,Threads))
|
875 | 102 | equemene | elif GpuStyle=='OpenCL': |
876 | 102 | equemene | try:
|
877 | 106 | equemene | InputCL={} |
878 | 106 | equemene | InputCL['Iterations']=Iterations
|
879 | 106 | equemene | InputCL['Steps']=1 |
880 | 106 | equemene | InputCL['Blocks']=Blocks
|
881 | 106 | equemene | InputCL['Threads']=Threads
|
882 | 106 | equemene | InputCL['Device']=Devices[0] |
883 | 106 | equemene | InputCL['RNG']=RNG
|
884 | 181 | equemene | InputCL['ValueType']=ValueType
|
885 | 181 | equemene | InputCL['IfThen']=IfThen
|
886 | 106 | equemene | OutputCL=MetropolisOpenCL(InputCL) |
887 | 106 | equemene | Inside=OutputCL['Circle']
|
888 | 106 | equemene | NewIterations=OutputCL['NewIterations']
|
889 | 106 | equemene | Duration=OutputCL['Duration']
|
890 | 102 | equemene | except:
|
891 | 127 | equemene | print("Problem with (%i,%i) // computations on OpenCL" % (Blocks,Threads))
|
892 | 104 | equemene | Duration=numpy.append(Duration,time.time()-start) |
893 | 104 | equemene | Rate=numpy.append(Rate,NewIterations/Duration[-1])
|
894 | 102 | equemene | else:
|
895 | 102 | equemene | if GpuStyle=='CUDA': |
896 | 102 | equemene | try:
|
897 | 122 | equemene | InputCU={} |
898 | 122 | equemene | InputCU['Iterations']=Iterations
|
899 | 122 | equemene | InputCU['Steps']=Redo
|
900 | 122 | equemene | InputCU['Blocks']=Blocks
|
901 | 122 | equemene | InputCU['Threads']=Threads
|
902 | 122 | equemene | InputCU['Device']=Devices[0] |
903 | 122 | equemene | InputCU['RNG']=RNG
|
904 | 122 | equemene | InputCU['ValueType']=ValueType
|
905 | 181 | equemene | InputCU['IfThen']=IfThen
|
906 | 122 | equemene | OutputCU=MetropolisCuda(InputCU) |
907 | 122 | equemene | Inside=OutputCU['Inside']
|
908 | 122 | equemene | NewIterations=OutputCU['NewIterations']
|
909 | 122 | equemene | Duration=OutputCU['Duration']
|
910 | 102 | equemene | except:
|
911 | 127 | equemene | print("Problem with (%i,%i) // computations on Cuda" % (Blocks,Threads))
|
912 | 152 | equemene | try:
|
913 | 152 | equemene | pycuda.context.pop() |
914 | 152 | equemene | except:
|
915 | 152 | equemene | pass
|
916 | 102 | equemene | elif GpuStyle=='OpenCL': |
917 | 102 | equemene | try:
|
918 | 106 | equemene | InputCL={} |
919 | 106 | equemene | InputCL['Iterations']=Iterations
|
920 | 106 | equemene | InputCL['Steps']=Redo
|
921 | 106 | equemene | InputCL['Blocks']=Blocks
|
922 | 106 | equemene | InputCL['Threads']=Threads
|
923 | 106 | equemene | InputCL['Device']=Devices[0] |
924 | 106 | equemene | InputCL['RNG']=RNG
|
925 | 106 | equemene | InputCL['ValueType']=ValueType
|
926 | 181 | equemene | InputCL['IfThen']=IfThen
|
927 | 106 | equemene | OutputCL=MetropolisOpenCL(InputCL) |
928 | 106 | equemene | Inside=OutputCL['Inside']
|
929 | 106 | equemene | NewIterations=OutputCL['NewIterations']
|
930 | 106 | equemene | Duration=OutputCL['Duration']
|
931 | 102 | equemene | except:
|
932 | 127 | equemene | print("Problem with (%i,%i) // computations on OpenCL" % (Blocks,Threads))
|
933 | 104 | equemene | Rate=NewIterations/Duration |
934 | 130 | equemene | print("Pi estimation %.8f" % (4./NewIterations*Inside)) |
935 | 130 | equemene | |
936 | 104 | equemene | |
937 | 104 | equemene | avgD=numpy.append(avgD,numpy.average(Duration)) |
938 | 104 | equemene | medD=numpy.append(medD,numpy.median(Duration)) |
939 | 104 | equemene | stdD=numpy.append(stdD,numpy.std(Duration)) |
940 | 104 | equemene | minD=numpy.append(minD,numpy.min(Duration)) |
941 | 104 | equemene | maxD=numpy.append(maxD,numpy.max(Duration)) |
942 | 104 | equemene | avgR=numpy.append(avgR,numpy.average(Rate)) |
943 | 104 | equemene | medR=numpy.append(medR,numpy.median(Rate)) |
944 | 104 | equemene | stdR=numpy.append(stdR,numpy.std(Rate)) |
945 | 104 | equemene | minR=numpy.append(minR,numpy.min(Rate)) |
946 | 104 | equemene | maxR=numpy.append(maxR,numpy.max(Rate)) |
947 | 102 | equemene | |
948 | 127 | equemene | print("%.2f %.2f %.2f %.2f %.2f %i %i %i %i %i" % (avgD[-1],medD[-1],stdD[-1],minD[-1],maxD[-1],avgR[-1],medR[-1],stdR[-1],minR[-1],maxR[-1])) |
949 | 104 | equemene | |
950 | 104 | equemene | numpy.savez("Pi_%s_%s_%s_%s_%s_%s_%s_%s_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu[Devices[0]],GpuStyle,BlocksBegin,BlocksEnd,ThreadsBegin,ThreadsEnd,Iterations,Devices[0],Metrology,gethostname()),(ExploredBlocks,ExploredThreads,avgD,medD,stdD,minD,maxD,avgR,medR,stdR,minR,maxR)) |
951 | 104 | equemene | ToSave=[ ExploredBlocks,ExploredThreads,avgD,medD,stdD,minD,maxD,avgR,medR,stdR,minR,maxR ] |
952 | 104 | equemene | numpy.savetxt("Pi_%s_%s_%s_%s_%s_%s_%s_%i_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu[Devices[0]],GpuStyle,BlocksBegin,BlocksEnd,ThreadsBegin,ThreadsEnd,Iterations,Devices[0],Metrology,gethostname()),numpy.transpose(ToSave),fmt='%i %i %e %e %e %e %e %i %i %i %i %i') |
953 | 102 | equemene | |
954 | 102 | equemene | if Fit:
|
955 | 102 | equemene | FitAndPrint(ExploredJobs,median,Curves) |