root / Ising / Numpy-C / launch.py @ 18
Historique | Voir | Annoter | Télécharger (646 octet)
1 | 18 | equemene | import array_module_np |
---|---|---|---|
2 | 18 | equemene | import numpy as np |
3 | 18 | equemene | import pylab |
4 | 18 | equemene | |
5 | 18 | equemene | # x = np.arange(0, 2 * np.pi, 0.1)
|
6 | 18 | equemene | # y = array_module_np.array_cos_np(x)
|
7 | 18 | equemene | # z = array_module_np.array_sin_np(x)
|
8 | 18 | equemene | # pylab.plot(x, y,x,z)
|
9 | 18 | equemene | # pylab.show()
|
10 | 18 | equemene | |
11 | 18 | equemene | # x = np.arange(0, 2 * np.pi, 0.1)
|
12 | 18 | equemene | # print array_module_np.array_cos_arg_np(x,1)
|
13 | 18 | equemene | |
14 | 18 | equemene | # x = np.arange(0,64,1).reshape(8,8).astype(np.int64)
|
15 | 18 | equemene | |
16 | 18 | equemene | # print x
|
17 | 18 | equemene | |
18 | 18 | equemene | # print array_module_np.array_operation_np(x,1,1,1,1000000000,2008,1010)
|
19 | 18 | equemene | |
20 | 18 | equemene | SIZE=8
|
21 | 18 | equemene | |
22 | 18 | equemene | x=np.where(np.random.randn(SIZE,SIZE)>0,1,-1).astype('int32') |
23 | 18 | equemene | |
24 | 18 | equemene | print x
|
25 | 18 | equemene | |
26 | 18 | equemene | y=array_module_np.array_metropolis_np(x,1,0,0.1,10000000,128,256) |
27 | 18 | equemene | |
28 | 18 | equemene | array_module_np.array_display_np(x) |
29 | 18 | equemene | |
30 | 18 | equemene | |
31 | 18 | equemene | print y,y.dtype
|
32 | 18 | equemene | |
33 | 18 | equemene | print x,x.dtype |