root / NBody / NBody.py @ 154
Historique | Voir | Annoter | Télécharger (19,03 ko)
1 | 128 | equemene | #!/usr/bin/env python3
|
---|---|---|---|
2 | 136 | equemene | # -*- coding: utf-8 -*-
|
3 | 116 | equemene | """
|
4 | 116 | equemene | Demonstrateur OpenCL d'interaction NCorps
|
5 | 116 | equemene |
|
6 | 116 | equemene | Emmanuel QUEMENER <emmanuel.quemener@ens-lyon.fr> CeCILLv2
|
7 | 116 | equemene | """
|
8 | 116 | equemene | import getopt |
9 | 116 | equemene | import sys |
10 | 116 | equemene | import time |
11 | 116 | equemene | import numpy as np |
12 | 116 | equemene | import pyopencl as cl |
13 | 116 | equemene | import pyopencl.array as cl_array |
14 | 116 | equemene | from numpy.random import randint as nprnd |
15 | 116 | equemene | |
16 | 132 | equemene | def DictionariesAPI(): |
17 | 132 | equemene | Marsaglia={'CONG':0,'SHR3':1,'MWC':2,'KISS':3} |
18 | 132 | equemene | Computing={'FP32':0,'FP64':1} |
19 | 132 | equemene | return(Marsaglia,Computing)
|
20 | 132 | equemene | |
21 | 142 | equemene | BlobOpenCL= """
|
22 | 116 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
23 | 116 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
24 | 116 | equemene | #define MWC (znew+wnew)
|
25 | 116 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
26 | 116 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
27 | 116 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
28 | 116 | equemene |
|
29 | 151 | equemene | #define MWCfp MWC * 2.3283064365386963e-10f
|
30 | 151 | equemene | #define KISSfp KISS * 2.3283064365386963e-10f
|
31 | 151 | equemene | #define SHR3fp SHR3 * 2.3283064365386963e-10f
|
32 | 151 | equemene | #define CONGfp CONG * 2.3283064365386963e-10f
|
33 | 116 | equemene |
|
34 | 132 | equemene | #define TFP32 0
|
35 | 132 | equemene | #define TFP64 1
|
36 | 132 | equemene |
|
37 | 151 | equemene | #define LENGTH 1.e0f
|
38 | 116 | equemene |
|
39 | 151 | equemene | #define PI 3.141592653589793238462643197169399375105820974944592307816406286e0f
|
40 | 151 | equemene | // #define PI M_PI
|
41 | 116 | equemene |
|
42 | 151 | equemene | #define SMALL_NUM 1.e-9f
|
43 | 116 | equemene |
|
44 | 132 | equemene | #if TYPE == TFP32
|
45 | 132 | equemene | #define MYFLOAT4 float4
|
46 | 132 | equemene | #define MYFLOAT8 float8
|
47 | 132 | equemene | #define MYFLOAT float
|
48 | 151 | equemene | #define DISTANCE fast_distance
|
49 | 132 | equemene | #else
|
50 | 135 | equemene | #pragma OPENCL EXTENSION cl_khr_fp64: enable
|
51 | 132 | equemene | #define MYFLOAT4 double4
|
52 | 132 | equemene | #define MYFLOAT8 double8
|
53 | 132 | equemene | #define MYFLOAT double
|
54 | 151 | equemene | #define DISTANCE distance
|
55 | 132 | equemene | #endif
|
56 | 132 | equemene |
|
57 | 132 | equemene | MYFLOAT4 Interaction(MYFLOAT4 m,MYFLOAT4 n)
|
58 | 116 | equemene | {
|
59 | 151 | equemene | return((n-m)/pow(DISTANCE(n,m),3));
|
60 | 116 | equemene | }
|
61 | 116 | equemene |
|
62 | 141 | equemene | MYFLOAT4 InteractionCore(MYFLOAT4 m,MYFLOAT4 n)
|
63 | 141 | equemene | {
|
64 | 151 | equemene | MYFLOAT core=1.e5f;
|
65 | 151 | equemene | MYFLOAT r=DISTANCE(n,m);
|
66 | 141 | equemene |
|
67 | 141 | equemene | return(core*(n-m)/(MYFLOAT)(pow(r*r+core*core,2)));
|
68 | 141 | equemene | }
|
69 | 141 | equemene |
|
70 | 133 | equemene | MYFLOAT PairPotential(MYFLOAT4 m,MYFLOAT4 n)
|
71 | 133 | equemene | {
|
72 | 151 | equemene | return((MYFLOAT)(-1.e0f)/(DISTANCE(n,m)));
|
73 | 133 | equemene | }
|
74 | 133 | equemene |
|
75 | 139 | equemene | MYFLOAT AtomicPotential(__global MYFLOAT8* clData,int gid)
|
76 | 139 | equemene | {
|
77 | 151 | equemene | MYFLOAT potential=0.e0f;
|
78 | 139 | equemene | MYFLOAT4 x=clData[gid].lo;
|
79 | 139 | equemene |
|
80 | 139 | equemene | for (int i=0;i<get_global_size(0);i++)
|
81 | 139 | equemene | {
|
82 | 139 | equemene | if (gid != i)
|
83 | 139 | equemene | potential+=PairPotential(x,clData[i].lo);
|
84 | 139 | equemene | }
|
85 | 133 | equemene |
|
86 | 139 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
87 | 141 | equemene | return(potential);
|
88 | 139 | equemene | }
|
89 | 139 | equemene |
|
90 | 142 | equemene | MYFLOAT AtomicPotentialCoM(__global MYFLOAT8* clData,__global MYFLOAT4* clCoM,int gid)
|
91 | 139 | equemene | {
|
92 | 142 | equemene | return(PairPotential(clData[gid].lo,clCoM[0]));
|
93 | 139 | equemene | }
|
94 | 139 | equemene |
|
95 | 132 | equemene | MYFLOAT8 AtomicRungeKutta(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
96 | 116 | equemene | {
|
97 | 151 | equemene | MYFLOAT4 a0=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
98 | 141 | equemene | MYFLOAT4 v0=(MYFLOAT4)clDataIn[gid].hi;
|
99 | 133 | equemene | MYFLOAT4 x0=(MYFLOAT4)clDataIn[gid].lo;
|
100 | 133 | equemene | int N = get_global_size(0);
|
101 | 133 | equemene |
|
102 | 133 | equemene | for (int i=0;i<N;i++)
|
103 | 121 | equemene | {
|
104 | 121 | equemene | if (gid != i)
|
105 | 121 | equemene | a0+=Interaction(x0,clDataIn[i].lo);
|
106 | 121 | equemene | }
|
107 | 121 | equemene |
|
108 | 151 | equemene | MYFLOAT4 a1=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
109 | 141 | equemene | MYFLOAT4 v1=v0+a0*dt;
|
110 | 141 | equemene | MYFLOAT4 x1=x0+v0*dt;
|
111 | 133 | equemene | for (int i=0;i<N;i++)
|
112 | 121 | equemene | {
|
113 | 121 | equemene | if (gid != i)
|
114 | 121 | equemene | a1+=Interaction(x1,clDataIn[i].lo);
|
115 | 121 | equemene | }
|
116 | 121 | equemene |
|
117 | 151 | equemene | MYFLOAT4 a2=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
118 | 151 | equemene | MYFLOAT4 v2=v0+a1*dt*(MYFLOAT)5.e-1f;
|
119 | 151 | equemene | MYFLOAT4 x2=x0+v1*dt*(MYFLOAT)5.e-1f;
|
120 | 133 | equemene | for (int i=0;i<N;i++)
|
121 | 121 | equemene | {
|
122 | 121 | equemene | if (gid != i)
|
123 | 121 | equemene | a2+=Interaction(x2,clDataIn[i].lo);
|
124 | 121 | equemene | }
|
125 | 121 | equemene |
|
126 | 151 | equemene | MYFLOAT4 a3=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
127 | 151 | equemene | MYFLOAT4 v3=v0+a2*dt*(MYFLOAT)5.e-1f;
|
128 | 151 | equemene | MYFLOAT4 x3=x0+v2*dt*(MYFLOAT)5.e-1f;
|
129 | 133 | equemene | for (int i=0;i<N;i++)
|
130 | 121 | equemene | {
|
131 | 121 | equemene | if (gid != i)
|
132 | 121 | equemene | a3+=Interaction(x3,clDataIn[i].lo);
|
133 | 121 | equemene | }
|
134 | 121 | equemene |
|
135 | 151 | equemene | MYFLOAT4 a4=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
136 | 141 | equemene | MYFLOAT4 v4=v0+a3*dt;
|
137 | 141 | equemene | MYFLOAT4 x4=x0+v3*dt;
|
138 | 141 | equemene | for (int i=0;i<N;i++)
|
139 | 141 | equemene | {
|
140 | 141 | equemene | if (gid != i)
|
141 | 141 | equemene | a4+=Interaction(x4,clDataIn[i].lo);
|
142 | 141 | equemene | }
|
143 | 141 | equemene |
|
144 | 151 | equemene | MYFLOAT4 xf=x0+dt*(v1+(MYFLOAT)2.e0f*(v2+v3)+v4)/(MYFLOAT)6.e0f;
|
145 | 151 | equemene | MYFLOAT4 vf=v0+dt*(a1+(MYFLOAT)2.e0f*(a2+a3)+a4)/(MYFLOAT)6.e0f;
|
146 | 121 | equemene |
|
147 | 151 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
148 | 121 | equemene | }
|
149 | 121 | equemene |
|
150 | 121 | equemene | // Elements from : http://doswa.com/2009/01/02/fourth-order-runge-kutta-numerical-integration.html
|
151 | 121 | equemene |
|
152 | 141 | equemene | MYFLOAT8 AtomicHeun(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
153 | 121 | equemene | {
|
154 | 141 | equemene | MYFLOAT4 x,v,a,xi,vi,ai,xf,vf;
|
155 | 116 | equemene |
|
156 | 141 | equemene | x=(MYFLOAT4)clDataIn[gid].lo;
|
157 | 141 | equemene | v=(MYFLOAT4)clDataIn[gid].hi;
|
158 | 151 | equemene | a=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
159 | 141 | equemene |
|
160 | 141 | equemene | for (int i=0;i<get_global_size(0);i++)
|
161 | 116 | equemene | {
|
162 | 116 | equemene | if (gid != i)
|
163 | 141 | equemene | a+=Interaction(x,clDataIn[i].lo);
|
164 | 116 | equemene | }
|
165 | 141 | equemene |
|
166 | 141 | equemene | vi=v+dt*a;
|
167 | 141 | equemene | xi=x+dt*vi;
|
168 | 151 | equemene | ai=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
169 | 141 | equemene |
|
170 | 141 | equemene | for (int i=0;i<get_global_size(0);i++)
|
171 | 116 | equemene | {
|
172 | 116 | equemene | if (gid != i)
|
173 | 141 | equemene | ai+=Interaction(xi,clDataIn[i].lo);
|
174 | 116 | equemene | }
|
175 | 141 | equemene |
|
176 | 151 | equemene | vf=v+dt*(a+ai)*5.e-1f;
|
177 | 151 | equemene | xf=x+dt*(v+vi)*5.e-1f;
|
178 | 118 | equemene |
|
179 | 151 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
180 | 119 | equemene | }
|
181 | 119 | equemene |
|
182 | 140 | equemene | MYFLOAT8 AtomicImplicitEuler(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
183 | 119 | equemene | {
|
184 | 132 | equemene | MYFLOAT4 x,v,a,xf,vf;
|
185 | 119 | equemene |
|
186 | 137 | equemene | x=(MYFLOAT4)clDataIn[gid].lo;
|
187 | 137 | equemene | v=(MYFLOAT4)clDataIn[gid].hi;
|
188 | 151 | equemene | a=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
189 | 119 | equemene | for (int i=0;i<get_global_size(0);i++)
|
190 | 119 | equemene | {
|
191 | 119 | equemene | if (gid != i)
|
192 | 119 | equemene | a+=Interaction(x,clDataIn[i].lo);
|
193 | 119 | equemene | }
|
194 | 133 | equemene |
|
195 | 119 | equemene | vf=v+dt*a;
|
196 | 133 | equemene | xf=x+dt*vf;
|
197 | 118 | equemene |
|
198 | 151 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
199 | 116 | equemene | }
|
200 | 116 | equemene |
|
201 | 140 | equemene | MYFLOAT8 AtomicExplicitEuler(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
202 | 140 | equemene | {
|
203 | 140 | equemene | MYFLOAT4 x,v,a,xf,vf;
|
204 | 140 | equemene |
|
205 | 140 | equemene | x=(MYFLOAT4)clDataIn[gid].lo;
|
206 | 140 | equemene | v=(MYFLOAT4)clDataIn[gid].hi;
|
207 | 151 | equemene | a=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
208 | 140 | equemene | for (int i=0;i<get_global_size(0);i++)
|
209 | 140 | equemene | {
|
210 | 140 | equemene | if (gid != i)
|
211 | 140 | equemene | a+=Interaction(x,clDataIn[i].lo);
|
212 | 140 | equemene | }
|
213 | 140 | equemene |
|
214 | 140 | equemene | vf=v+dt*a;
|
215 | 140 | equemene | xf=x+dt*v;
|
216 | 140 | equemene |
|
217 | 151 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
218 | 140 | equemene | }
|
219 | 140 | equemene |
|
220 | 139 | equemene | __kernel void SplutterPoints(__global MYFLOAT8* clData, MYFLOAT box,
|
221 | 139 | equemene | uint seed_z,uint seed_w)
|
222 | 116 | equemene | {
|
223 | 116 | equemene | int gid = get_global_id(0);
|
224 | 116 | equemene | uint z=seed_z+(uint)gid;
|
225 | 116 | equemene | uint w=seed_w-(uint)gid;
|
226 | 133 | equemene |
|
227 | 151 | equemene | MYFLOAT x0=box*(MYFLOAT)(MWCfp-5.e-1f);
|
228 | 151 | equemene | MYFLOAT y0=box*(MYFLOAT)(MWCfp-5.e-1f);
|
229 | 151 | equemene | MYFLOAT z0=box*(MYFLOAT)(MWCfp-5.e-1f);
|
230 | 137 | equemene |
|
231 | 151 | equemene | clData[gid].s01234567 = (MYFLOAT8) (x0,y0,z0,0.e0f,0.e0f,0.e0f,0.e0f,0.e0f);
|
232 | 116 | equemene | }
|
233 | 116 | equemene |
|
234 | 142 | equemene | __kernel void SplutterStress(__global MYFLOAT8* clData,__global MYFLOAT4* clCoM, MYFLOAT velocity,uint seed_z,uint seed_w)
|
235 | 139 | equemene | {
|
236 | 139 | equemene | int gid = get_global_id(0);
|
237 | 142 | equemene | MYFLOAT N = (MYFLOAT)get_global_size(0);
|
238 | 139 | equemene | uint z=seed_z+(uint)gid;
|
239 | 139 | equemene | uint w=seed_w-(uint)gid;
|
240 | 139 | equemene |
|
241 | 139 | equemene | if (velocity<SMALL_NUM) {
|
242 | 151 | equemene | MYFLOAT4 SpeedVector=(MYFLOAT4)normalize(cross(clData[gid].lo,clCoM[0]))*sqrt(-AtomicPotential(clData,gid)*5.e-1f);
|
243 | 139 | equemene | clData[gid].hi=SpeedVector;
|
244 | 139 | equemene | }
|
245 | 139 | equemene | else
|
246 | 139 | equemene | {
|
247 | 142 | equemene | MYFLOAT theta=MWCfp*PI;
|
248 | 151 | equemene | MYFLOAT phi=MWCfp*PI*(MYFLOAT)2.e0f;
|
249 | 142 | equemene | MYFLOAT sinTheta=sin(theta);
|
250 | 142 | equemene |
|
251 | 139 | equemene | clData[gid].s4=velocity*sinTheta*cos(phi);
|
252 | 139 | equemene | clData[gid].s5=velocity*sinTheta*sin(phi);
|
253 | 139 | equemene | clData[gid].s6=velocity*cos(theta);
|
254 | 139 | equemene | }
|
255 | 139 | equemene | }
|
256 | 139 | equemene |
|
257 | 132 | equemene | __kernel void RungeKutta(__global MYFLOAT8* clData,MYFLOAT h)
|
258 | 116 | equemene | {
|
259 | 116 | equemene | int gid = get_global_id(0);
|
260 | 116 | equemene |
|
261 | 132 | equemene | MYFLOAT8 clDataGid=AtomicRungeKutta(clData,gid,h);
|
262 | 116 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
263 | 121 | equemene | clData[gid]=clDataGid;
|
264 | 116 | equemene | }
|
265 | 116 | equemene |
|
266 | 140 | equemene | __kernel void ImplicitEuler(__global MYFLOAT8* clData,MYFLOAT h)
|
267 | 116 | equemene | {
|
268 | 116 | equemene | int gid = get_global_id(0);
|
269 | 116 | equemene |
|
270 | 140 | equemene | MYFLOAT8 clDataGid=AtomicImplicitEuler(clData,gid,h);
|
271 | 116 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
272 | 121 | equemene | clData[gid]=clDataGid;
|
273 | 116 | equemene | }
|
274 | 133 | equemene |
|
275 | 141 | equemene | __kernel void Heun(__global MYFLOAT8* clData,MYFLOAT h)
|
276 | 141 | equemene | {
|
277 | 141 | equemene | int gid = get_global_id(0);
|
278 | 141 | equemene |
|
279 | 141 | equemene | MYFLOAT8 clDataGid=AtomicHeun(clData,gid,h);
|
280 | 141 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
281 | 141 | equemene | clData[gid]=clDataGid;
|
282 | 141 | equemene | }
|
283 | 141 | equemene |
|
284 | 140 | equemene | __kernel void ExplicitEuler(__global MYFLOAT8* clData,MYFLOAT h)
|
285 | 140 | equemene | {
|
286 | 140 | equemene | int gid = get_global_id(0);
|
287 | 140 | equemene |
|
288 | 140 | equemene | MYFLOAT8 clDataGid=AtomicExplicitEuler(clData,gid,h);
|
289 | 140 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
290 | 140 | equemene | clData[gid]=clDataGid;
|
291 | 140 | equemene | }
|
292 | 139 | equemene |
|
293 | 142 | equemene | __kernel void CoMPotential(__global MYFLOAT8* clData,__global MYFLOAT4* clCoM,__global MYFLOAT* clPotential)
|
294 | 133 | equemene | {
|
295 | 133 | equemene | int gid = get_global_id(0);
|
296 | 133 | equemene |
|
297 | 142 | equemene | clPotential[gid]=PairPotential(clData[gid].lo,clCoM[0]);
|
298 | 139 | equemene | }
|
299 | 139 | equemene |
|
300 | 142 | equemene | __kernel void Potential(__global MYFLOAT8* clData,__global MYFLOAT* clPotential)
|
301 | 139 | equemene | {
|
302 | 139 | equemene | int gid = get_global_id(0);
|
303 | 139 | equemene |
|
304 | 151 | equemene | MYFLOAT potential=0.e0f;
|
305 | 133 | equemene | MYFLOAT4 x=clData[gid].lo;
|
306 | 133 | equemene |
|
307 | 133 | equemene | for (int i=0;i<get_global_size(0);i++)
|
308 | 133 | equemene | {
|
309 | 133 | equemene | if (gid != i)
|
310 | 133 | equemene | potential+=PairPotential(x,clData[i].lo);
|
311 | 133 | equemene | }
|
312 | 133 | equemene |
|
313 | 133 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
314 | 151 | equemene | clPotential[gid]=(MYFLOAT)5.e-1f*potential;
|
315 | 133 | equemene | }
|
316 | 133 | equemene |
|
317 | 142 | equemene | __kernel void CenterOfMass(__global MYFLOAT8* clData,__global MYFLOAT4* clCoM,int Size)
|
318 | 139 | equemene | {
|
319 | 139 | equemene | MYFLOAT4 CoM=clData[0].lo;
|
320 | 142 | equemene |
|
321 | 139 | equemene | for (int i=1;i<Size;i++)
|
322 | 139 | equemene | {
|
323 | 139 | equemene | CoM+=clData[i].lo;
|
324 | 139 | equemene | }
|
325 | 142 | equemene |
|
326 | 139 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
327 | 151 | equemene | clCoM[0]=(MYFLOAT4)(CoM.s0,CoM.s1,CoM.s2,0.e0f)/(MYFLOAT)Size;
|
328 | 139 | equemene | }
|
329 | 139 | equemene |
|
330 | 133 | equemene | __kernel void Kinetic(__global MYFLOAT8* clData,__global MYFLOAT* clKinetic)
|
331 | 133 | equemene | {
|
332 | 133 | equemene | int gid = get_global_id(0);
|
333 | 133 | equemene |
|
334 | 139 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
335 | 151 | equemene | clKinetic[gid]=(MYFLOAT)5.e-1f*(MYFLOAT)pow(length(clData[gid].hi),2);
|
336 | 133 | equemene | }
|
337 | 116 | equemene | """
|
338 | 116 | equemene | |
339 | 133 | equemene | def Energy(MyData): |
340 | 133 | equemene | return(sum(pow(MyData,2))) |
341 | 133 | equemene | |
342 | 116 | equemene | if __name__=='__main__': |
343 | 116 | equemene | |
344 | 132 | equemene | # ValueType
|
345 | 132 | equemene | ValueType='FP32'
|
346 | 132 | equemene | class MyFloat(np.float32):pass |
347 | 142 | equemene | clType8=cl_array.vec.float8 |
348 | 142 | equemene | clType4=cl_array.vec.float4 |
349 | 116 | equemene | # Set defaults values
|
350 | 118 | equemene | np.set_printoptions(precision=2)
|
351 | 116 | equemene | # Id of Device : 1 is for first find !
|
352 | 120 | equemene | Device=1
|
353 | 116 | equemene | # Iterations is integer
|
354 | 133 | equemene | Number=4
|
355 | 116 | equemene | # Size of box
|
356 | 132 | equemene | SizeOfBox=MyFloat(1.)
|
357 | 116 | equemene | # Initial velocity of particules
|
358 | 132 | equemene | Velocity=MyFloat(1.)
|
359 | 116 | equemene | # Redo the last process
|
360 | 133 | equemene | Iterations=100
|
361 | 116 | equemene | # Step
|
362 | 133 | equemene | Step=MyFloat(0.01)
|
363 | 121 | equemene | # Method of integration
|
364 | 150 | equemene | Method='ImplicitEuler'
|
365 | 132 | equemene | # InitialRandom
|
366 | 132 | equemene | InitialRandom=False
|
367 | 132 | equemene | # RNG Marsaglia Method
|
368 | 132 | equemene | RNG='MWC'
|
369 | 133 | equemene | # CheckEnergies
|
370 | 133 | equemene | CheckEnergies=False
|
371 | 134 | equemene | # Display samples in 3D
|
372 | 139 | equemene | GraphSamples=False
|
373 | 139 | equemene | # Viriel Distribution of stress
|
374 | 139 | equemene | VirielStress=True
|
375 | 132 | equemene | |
376 | 142 | equemene | HowToUse='%s -h [Help] -r [InitialRandom] -e [VirielStress] -g [GraphSamples] -c [CheckEnergies] -d <DeviceId> -n <NumberOfParticules> -z <SizeOfBox> -v <Velocity> -s <Step> -i <Iterations> -m <RungeKutta|ImplicitEuler|ExplicitEuler|Heun> -t <FP32|FP64>'
|
377 | 116 | equemene | |
378 | 116 | equemene | try:
|
379 | 139 | equemene | opts, args = getopt.getopt(sys.argv[1:],"rehgcd:n:z:v:i:s:m:t:",["random","viriel","graph","check","device=","number=","size=","velocity=","iterations=","step=","method=","valuetype="]) |
380 | 116 | equemene | except getopt.GetoptError:
|
381 | 128 | equemene | print(HowToUse % sys.argv[0])
|
382 | 116 | equemene | sys.exit(2)
|
383 | 116 | equemene | |
384 | 116 | equemene | for opt, arg in opts: |
385 | 116 | equemene | if opt == '-h': |
386 | 128 | equemene | print(HowToUse % sys.argv[0])
|
387 | 116 | equemene | |
388 | 128 | equemene | print("\nInformations about devices detected under OpenCL:")
|
389 | 116 | equemene | try:
|
390 | 132 | equemene | Id=0
|
391 | 116 | equemene | for platform in cl.get_platforms(): |
392 | 116 | equemene | for device in platform.get_devices(): |
393 | 137 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
394 | 149 | equemene | deviceType="xPU"
|
395 | 128 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
396 | 116 | equemene | Id=Id+1
|
397 | 116 | equemene | sys.exit() |
398 | 116 | equemene | except ImportError: |
399 | 128 | equemene | print("Your platform does not seem to support OpenCL")
|
400 | 116 | equemene | sys.exit() |
401 | 116 | equemene | |
402 | 132 | equemene | elif opt in ("-t", "--valuetype"): |
403 | 132 | equemene | if arg=='FP64': |
404 | 132 | equemene | class MyFloat(np.float64): pass |
405 | 142 | equemene | clType8=cl_array.vec.double8 |
406 | 142 | equemene | clType4=cl_array.vec.double4 |
407 | 132 | equemene | else:
|
408 | 132 | equemene | class MyFloat(np.float32):pass |
409 | 142 | equemene | clType8=cl_array.vec.float8 |
410 | 142 | equemene | clType4=cl_array.vec.float4 |
411 | 132 | equemene | ValueType = arg |
412 | 116 | equemene | elif opt in ("-d", "--device"): |
413 | 116 | equemene | Device=int(arg)
|
414 | 121 | equemene | elif opt in ("-m", "--method"): |
415 | 121 | equemene | Method=arg |
416 | 116 | equemene | elif opt in ("-n", "--number"): |
417 | 116 | equemene | Number=int(arg)
|
418 | 116 | equemene | elif opt in ("-z", "--size"): |
419 | 132 | equemene | SizeOfBox=MyFloat(arg) |
420 | 116 | equemene | elif opt in ("-v", "--velocity"): |
421 | 132 | equemene | Velocity=MyFloat(arg) |
422 | 139 | equemene | VirielStress=False
|
423 | 116 | equemene | elif opt in ("-s", "--step"): |
424 | 132 | equemene | Step=MyFloat(arg) |
425 | 120 | equemene | elif opt in ("-i", "--iterations"): |
426 | 120 | equemene | Iterations=int(arg)
|
427 | 132 | equemene | elif opt in ("-r", "--random"): |
428 | 132 | equemene | InitialRandom=True
|
429 | 133 | equemene | elif opt in ("-c", "--check"): |
430 | 133 | equemene | CheckEnergies=True
|
431 | 134 | equemene | elif opt in ("-g", "--graph"): |
432 | 134 | equemene | GraphSamples=True
|
433 | 139 | equemene | elif opt in ("-e", "--viriel"): |
434 | 139 | equemene | VirielStress=True
|
435 | 134 | equemene | |
436 | 141 | equemene | SizeOfBox=MyFloat(np.power(Number,1./3.)*SizeOfBox) |
437 | 132 | equemene | Velocity=MyFloat(Velocity) |
438 | 132 | equemene | Step=MyFloat(Step) |
439 | 132 | equemene | |
440 | 128 | equemene | print("Device choosed : %s" % Device)
|
441 | 128 | equemene | print("Number of particules : %s" % Number)
|
442 | 128 | equemene | print("Size of Box : %s" % SizeOfBox)
|
443 | 139 | equemene | print("Initial velocity %s" % Velocity)
|
444 | 139 | equemene | print("Number of iterations %s" % Iterations)
|
445 | 139 | equemene | print("Step of iteration %s" % Step)
|
446 | 139 | equemene | print("Method of resolution %s" % Method)
|
447 | 139 | equemene | print("Initial Random for RNG Seed %s" % InitialRandom)
|
448 | 139 | equemene | print("Check for Energies %s" % CheckEnergies)
|
449 | 139 | equemene | print("Graph for Samples %s" % GraphSamples)
|
450 | 139 | equemene | print("ValueType is %s" % ValueType)
|
451 | 139 | equemene | print("Viriel distribution of stress %s" % VirielStress)
|
452 | 116 | equemene | |
453 | 132 | equemene | # Create Numpy array of CL vector with 8 FP32
|
454 | 142 | equemene | MyCoM = np.zeros(1,dtype=clType4)
|
455 | 142 | equemene | MyData = np.zeros(Number, dtype=clType8) |
456 | 133 | equemene | MyPotential = np.zeros(Number, dtype=MyFloat) |
457 | 133 | equemene | MyKinetic = np.zeros(Number, dtype=MyFloat) |
458 | 132 | equemene | |
459 | 132 | equemene | Marsaglia,Computing=DictionariesAPI() |
460 | 132 | equemene | |
461 | 132 | equemene | # Scan the OpenCL arrays
|
462 | 132 | equemene | Id=0
|
463 | 116 | equemene | HasXPU=False
|
464 | 116 | equemene | for platform in cl.get_platforms(): |
465 | 116 | equemene | for device in platform.get_devices(): |
466 | 116 | equemene | if Id==Device:
|
467 | 116 | equemene | PlatForm=platform |
468 | 116 | equemene | XPU=device |
469 | 128 | equemene | print("CPU/GPU selected: ",device.name.lstrip())
|
470 | 151 | equemene | print("Platform selected: ",platform.name)
|
471 | 116 | equemene | HasXPU=True
|
472 | 116 | equemene | Id+=1
|
473 | 116 | equemene | |
474 | 116 | equemene | if HasXPU==False: |
475 | 128 | equemene | print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
476 | 116 | equemene | sys.exit() |
477 | 116 | equemene | |
478 | 132 | equemene | # Create Context
|
479 | 116 | equemene | try:
|
480 | 116 | equemene | ctx = cl.Context([XPU]) |
481 | 116 | equemene | queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
482 | 116 | equemene | except:
|
483 | 128 | equemene | print("Crash during context creation")
|
484 | 116 | equemene | |
485 | 132 | equemene | print(Marsaglia[RNG],Computing[ValueType]) |
486 | 132 | equemene | # Build all routines used for the computing
|
487 | 151 | equemene | #BuildOptions="-DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType])
|
488 | 151 | equemene | #BuildOptions="-cl-mad-enable -cl-fast-relaxed-math -DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType])
|
489 | 151 | equemene | BuildOptions="-cl-mad-enable -DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType])
|
490 | 151 | equemene | if 'Intel' in PlatForm.name: |
491 | 151 | equemene | MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = BuildOptions) |
492 | 151 | equemene | else:
|
493 | 151 | equemene | MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = BuildOptions+" -cl-strict-aliasing")
|
494 | 119 | equemene | |
495 | 116 | equemene | mf = cl.mem_flags |
496 | 119 | equemene | clData = cl.Buffer(ctx, mf.READ_WRITE, MyData.nbytes) |
497 | 133 | equemene | clPotential = cl.Buffer(ctx, mf.READ_WRITE, MyPotential.nbytes) |
498 | 133 | equemene | clKinetic = cl.Buffer(ctx, mf.READ_WRITE, MyKinetic.nbytes) |
499 | 139 | equemene | clCoM = cl.Buffer(ctx, mf.READ_WRITE, MyCoM.nbytes) |
500 | 119 | equemene | #clData = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyData)
|
501 | 116 | equemene | |
502 | 134 | equemene | print('All particles superimposed.')
|
503 | 116 | equemene | |
504 | 132 | equemene | print(SizeOfBox.dtype) |
505 | 132 | equemene | |
506 | 132 | equemene | # Set particles to RNG points
|
507 | 132 | equemene | if InitialRandom:
|
508 | 139 | equemene | MyRoutines.SplutterPoints(queue,(Number,1),None,clData,SizeOfBox,np.uint32(nprnd(2**32)),np.uint32(nprnd(2**32))) |
509 | 132 | equemene | else:
|
510 | 139 | equemene | MyRoutines.SplutterPoints(queue,(Number,1),None,clData,SizeOfBox,np.uint32(110271),np.uint32(250173)) |
511 | 116 | equemene | |
512 | 132 | equemene | print('All particules distributed')
|
513 | 139 | equemene | |
514 | 139 | equemene | MyRoutines.CenterOfMass(queue,(1,1),None,clData,clCoM,np.int32(Number)) |
515 | 142 | equemene | cl.enqueue_copy(queue,MyCoM,clCoM) |
516 | 142 | equemene | print('Center Of Mass: (%s,%s,%s)' % (MyCoM[0][0],MyCoM[0][1],MyCoM[0][2])) |
517 | 139 | equemene | |
518 | 139 | equemene | if VirielStress:
|
519 | 150 | equemene | MyRoutines.SplutterStress(queue,(Number,1),None,clData,clCoM,MyFloat(0.),np.uint32(110271),np.uint32(250173)) |
520 | 139 | equemene | else:
|
521 | 139 | equemene | MyRoutines.SplutterStress(queue,(Number,1),None,clData,clCoM,Velocity,np.uint32(110271),np.uint32(250173)) |
522 | 139 | equemene | |
523 | 139 | equemene | if GraphSamples:
|
524 | 139 | equemene | cl.enqueue_copy(queue, MyData, clData) |
525 | 139 | equemene | t0=np.array([[MyData[0][0],MyData[0][1],MyData[0][2]]]) |
526 | 139 | equemene | t1=np.array([[MyData[1][0],MyData[1][1],MyData[1][2]]]) |
527 | 139 | equemene | tL=np.array([[MyData[-1][0],MyData[-1][1],MyData[-1][2]]]) |
528 | 139 | equemene | s0=np.array([[MyData[0][4],MyData[0][5],MyData[0][6],MyData[0][7]]]) |
529 | 139 | equemene | s1=np.array([[MyData[1][4],MyData[1][5],MyData[1][6],MyData[1][7]]]) |
530 | 139 | equemene | sL=np.array([[MyData[-1][4],MyData[-1][5],MyData[-1][6],MyData[-1][7]]]) |
531 | 139 | equemene | |
532 | 141 | equemene | #print(t0,t1,tL)
|
533 | 141 | equemene | #print(s0,s1,sL)
|
534 | 139 | equemene | |
535 | 142 | equemene | CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clData,clPotential) |
536 | 141 | equemene | CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clData,clKinetic) |
537 | 133 | equemene | CLLaunch.wait() |
538 | 141 | equemene | cl.enqueue_copy(queue,MyPotential,clPotential) |
539 | 141 | equemene | cl.enqueue_copy(queue,MyKinetic,clKinetic) |
540 | 142 | equemene | print('Viriel=%s Potential=%s Kinetic=%s'% (np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))) |
541 | 133 | equemene | |
542 | 134 | equemene | if GraphSamples:
|
543 | 134 | equemene | cl.enqueue_copy(queue, MyData, clData) |
544 | 134 | equemene | t0=np.array([[MyData[0][0],MyData[0][1],MyData[0][2]]]) |
545 | 134 | equemene | t1=np.array([[MyData[1][0],MyData[1][1],MyData[1][2]]]) |
546 | 134 | equemene | tL=np.array([[MyData[-1][0],MyData[-1][1],MyData[-1][2]]]) |
547 | 116 | equemene | |
548 | 116 | equemene | time_start=time.time() |
549 | 128 | equemene | for i in range(Iterations): |
550 | 140 | equemene | if Method=="ImplicitEuler": |
551 | 140 | equemene | CLLaunch=MyRoutines.ImplicitEuler(queue,(Number,1),None,clData,Step) |
552 | 140 | equemene | elif Method=="ExplicitEuler": |
553 | 140 | equemene | CLLaunch=MyRoutines.ExplicitEuler(queue,(Number,1),None,clData,Step) |
554 | 141 | equemene | elif Method=="Heun": |
555 | 141 | equemene | CLLaunch=MyRoutines.Heun(queue,(Number,1),None,clData,Step) |
556 | 140 | equemene | else:
|
557 | 132 | equemene | CLLaunch=MyRoutines.RungeKutta(queue,(Number,1),None,clData,Step) |
558 | 118 | equemene | CLLaunch.wait() |
559 | 133 | equemene | if CheckEnergies:
|
560 | 142 | equemene | CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clData,clPotential) |
561 | 141 | equemene | CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clData,clKinetic) |
562 | 133 | equemene | CLLaunch.wait() |
563 | 133 | equemene | cl.enqueue_copy(queue,MyPotential,clPotential) |
564 | 133 | equemene | cl.enqueue_copy(queue,MyKinetic,clKinetic) |
565 | 151 | equemene | print(np.sum(MyPotential)+2.*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))
|
566 | 133 | equemene | |
567 | 139 | equemene | print(MyPotential,MyKinetic) |
568 | 139 | equemene | |
569 | 134 | equemene | if GraphSamples:
|
570 | 134 | equemene | cl.enqueue_copy(queue, MyData, clData) |
571 | 134 | equemene | t0=np.append(t0,[MyData[0][0],MyData[0][1],MyData[0][2]]) |
572 | 134 | equemene | t1=np.append(t1,[MyData[1][0],MyData[1][1],MyData[1][2]]) |
573 | 134 | equemene | tL=np.append(tL,[MyData[-1][0],MyData[-1][1],MyData[-1][2]]) |
574 | 128 | equemene | print("\nDuration on %s for each %s" % (Device,(time.time()-time_start)/Iterations))
|
575 | 135 | equemene | |
576 | 142 | equemene | CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clData,clPotential) |
577 | 141 | equemene | CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clData,clKinetic) |
578 | 141 | equemene | CLLaunch.wait() |
579 | 141 | equemene | cl.enqueue_copy(queue,MyPotential,clPotential) |
580 | 141 | equemene | cl.enqueue_copy(queue,MyKinetic,clKinetic) |
581 | 151 | equemene | print('Viriel=%s Potential=%s Kinetic=%s'% (np.sum(MyPotential)+2.*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))) |
582 | 142 | equemene | MyRoutines.CenterOfMass(queue,(1,1),None,clData,clCoM,np.int32(Number)) |
583 | 142 | equemene | cl.enqueue_copy(queue,MyCoM,clCoM) |
584 | 142 | equemene | print('Center Of Mass: (%s,%s,%s)' % (MyCoM[0][0],MyCoM[0][1],MyCoM[0][2])) |
585 | 141 | equemene | |
586 | 135 | equemene | if GraphSamples:
|
587 | 135 | equemene | t0=np.transpose(np.reshape(t0,(Iterations+1,3))) |
588 | 135 | equemene | t1=np.transpose(np.reshape(t1,(Iterations+1,3))) |
589 | 135 | equemene | tL=np.transpose(np.reshape(tL,(Iterations+1,3))) |
590 | 118 | equemene | |
591 | 135 | equemene | import matplotlib.pyplot as plt |
592 | 135 | equemene | from mpl_toolkits.mplot3d import Axes3D |
593 | 119 | equemene | |
594 | 135 | equemene | fig = plt.figure() |
595 | 135 | equemene | ax = fig.gca(projection='3d')
|
596 | 135 | equemene | ax.scatter(t0[0],t0[1],t0[2], marker='^',color='blue') |
597 | 135 | equemene | ax.scatter(t1[0],t1[1],t1[2], marker='o',color='red') |
598 | 135 | equemene | ax.scatter(tL[0],tL[1],tL[2], marker='D',color='green') |
599 | 135 | equemene | |
600 | 135 | equemene | ax.set_xlabel('X Label')
|
601 | 135 | equemene | ax.set_ylabel('Y Label')
|
602 | 135 | equemene | ax.set_zlabel('Z Label')
|
603 | 135 | equemene | |
604 | 135 | equemene | plt.show() |
605 | 119 | equemene | |
606 | 119 | equemene | clData.release() |
607 | 133 | equemene | clKinetic.release() |
608 | 133 | equemene | clPotential.release() |