root / Ising / GPU / Ising2D-GPU-One.py @ 144
Historique | Voir | Annoter | Télécharger (12,8 ko)
1 | 18 | equemene | #!/usr/bin/env python
|
---|---|---|---|
2 | 18 | equemene | #
|
3 | 18 | equemene | # Ising2D model in serial mode
|
4 | 18 | equemene | #
|
5 | 18 | equemene | # CC BY-NC-SA 2011 : <emmanuel.quemener@ens-lyon.fr>
|
6 | 18 | equemene | |
7 | 18 | equemene | import sys |
8 | 18 | equemene | import numpy |
9 | 18 | equemene | from PIL import Image |
10 | 18 | equemene | from math import exp |
11 | 18 | equemene | from random import random |
12 | 18 | equemene | import time |
13 | 18 | equemene | import getopt |
14 | 18 | equemene | import matplotlib.pyplot as plt |
15 | 18 | equemene | from numpy.random import randint as nprnd |
16 | 18 | equemene | |
17 | 18 | equemene | KERNEL_CODE_OPENCL="""
|
18 | 18 | equemene |
|
19 | 18 | equemene | // Marsaglia RNG very simple implementation
|
20 | 18 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
21 | 18 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
22 | 18 | equemene | #define MWC (znew+wnew)
|
23 | 18 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
24 | 18 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
25 | 18 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
26 | 18 | equemene |
|
27 | 18 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
28 | 18 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
29 | 18 | equemene |
|
30 | 18 | equemene | __kernel void MainLoopOne(__global char *s,float T,float J,float B,
|
31 | 18 | equemene | uint sizex,uint sizey,
|
32 | 18 | equemene | uint iterations,uint seed_w,uint seed_z)
|
33 | 18 | equemene |
|
34 | 18 | equemene | {
|
35 | 18 | equemene | uint z=seed_z;
|
36 | 18 | equemene | uint w=seed_w;
|
37 | 18 | equemene |
|
38 | 18 | equemene | for (uint i=0;i<iterations;i++) {
|
39 | 18 | equemene |
|
40 | 18 | equemene | uint x=(uint)(MWC%sizex) ;
|
41 | 18 | equemene | uint y=(uint)(MWC%sizey) ;
|
42 | 18 | equemene |
|
43 | 18 | equemene | int p=s[x+sizex*y];
|
44 | 18 | equemene |
|
45 | 18 | equemene | int d=s[x+sizex*((y+1)%sizey)];
|
46 | 18 | equemene | int u=s[x+sizex*((y-1)%sizey)];
|
47 | 18 | equemene | int l=s[((x-1)%sizex)+sizex*y];
|
48 | 18 | equemene | int r=s[((x+1)%sizex)+sizex*y];
|
49 | 18 | equemene |
|
50 | 18 | equemene | float DeltaE=2.0f*p*(J*(u+d+l+r)+B);
|
51 | 18 | equemene |
|
52 | 18 | equemene | int factor=((DeltaE < 0.0f) || (MWCfp < exp(-DeltaE/T))) ? -1:1;
|
53 | 18 | equemene | s[x%sizex+sizex*(y%sizey)] = (char)factor*p;
|
54 | 18 | equemene | }
|
55 | 18 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
56 | 18 | equemene |
|
57 | 18 | equemene | }
|
58 | 18 | equemene | """
|
59 | 18 | equemene | |
60 | 18 | equemene | KERNEL_CODE_CUDA="""
|
61 | 18 | equemene |
|
62 | 18 | equemene | // Marsaglia RNG very simple implementation
|
63 | 18 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
64 | 18 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
65 | 18 | equemene | #define MWC (znew+wnew)
|
66 | 18 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
67 | 18 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
68 | 18 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
69 | 18 | equemene |
|
70 | 18 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
71 | 18 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
72 | 18 | equemene |
|
73 | 18 | equemene | __global__ void MainLoopOne(char *s,float T,float J,float B,
|
74 | 18 | equemene | uint sizex,uint sizey,
|
75 | 18 | equemene | uint iterations,uint seed_w,uint seed_z)
|
76 | 18 | equemene |
|
77 | 18 | equemene | {
|
78 | 18 | equemene | uint z=seed_z;
|
79 | 18 | equemene | uint w=seed_w;
|
80 | 18 | equemene |
|
81 | 18 | equemene | for (uint i=0;i<iterations;i++) {
|
82 | 18 | equemene |
|
83 | 18 | equemene | uint x=(uint)(MWC%sizex) ;
|
84 | 18 | equemene | uint y=(uint)(MWC%sizey) ;
|
85 | 18 | equemene |
|
86 | 18 | equemene | int p=s[x+sizex*y];
|
87 | 18 | equemene |
|
88 | 18 | equemene | int d=s[x+sizex*((y+1)%sizey)];
|
89 | 18 | equemene | int u=s[x+sizex*((y-1)%sizey)];
|
90 | 18 | equemene | int l=s[((x-1)%sizex)+sizex*y];
|
91 | 18 | equemene | int r=s[((x+1)%sizex)+sizex*y];
|
92 | 18 | equemene |
|
93 | 18 | equemene | float DeltaE=2.0f*p*(J*(u+d+l+r)+B);
|
94 | 18 | equemene |
|
95 | 18 | equemene | int factor=((DeltaE < 0.0f) || (MWCfp < exp(-DeltaE/T))) ? -1:1;
|
96 | 18 | equemene | s[x%sizex+sizex*(y%sizey)] = (char)factor*p;
|
97 | 18 | equemene | }
|
98 | 18 | equemene | __syncthreads();
|
99 | 18 | equemene |
|
100 | 18 | equemene | }
|
101 | 18 | equemene | """
|
102 | 18 | equemene | |
103 | 18 | equemene | def ImageOutput(sigma,prefix): |
104 | 18 | equemene | Max=sigma.max() |
105 | 18 | equemene | Min=sigma.min() |
106 | 18 | equemene | |
107 | 18 | equemene | # Normalize value as 8bits Integer
|
108 | 18 | equemene | SigmaInt=(255*(sigma-Min)/(Max-Min)).astype('uint8') |
109 | 18 | equemene | image = Image.fromarray(SigmaInt) |
110 | 18 | equemene | image.save("%s.jpg" % prefix)
|
111 | 18 | equemene | |
112 | 18 | equemene | def Metropolis(sigma,T,J,B,iterations): |
113 | 18 | equemene | start=time.time() |
114 | 18 | equemene | |
115 | 18 | equemene | SizeX,SizeY=sigma.shape |
116 | 18 | equemene | |
117 | 18 | equemene | for p in xrange(0,iterations): |
118 | 18 | equemene | # Random access coordonate
|
119 | 18 | equemene | X,Y=numpy.random.randint(SizeX),numpy.random.randint(SizeY) |
120 | 18 | equemene | |
121 | 18 | equemene | DeltaE=J*sigma[X,Y]*(2*(sigma[X,(Y+1)%SizeY]+ |
122 | 18 | equemene | sigma[X,(Y-1)%SizeY]+
|
123 | 18 | equemene | sigma[(X-1)%SizeX,Y]+
|
124 | 18 | equemene | sigma[(X+1)%SizeX,Y])+B)
|
125 | 18 | equemene | |
126 | 18 | equemene | if DeltaE < 0. or random() < exp(-DeltaE/T): |
127 | 18 | equemene | sigma[X,Y]=-sigma[X,Y] |
128 | 18 | equemene | duration=time.time()-start |
129 | 18 | equemene | return(duration)
|
130 | 18 | equemene | |
131 | 18 | equemene | def MetropolisCuda(sigma,T,J,B,iterations,ParaStyle,Alu,Device): |
132 | 18 | equemene | |
133 | 18 | equemene | # Avec PyCUDA autoinit, rien a faire !
|
134 | 18 | equemene | |
135 | 18 | equemene | sigmaCU=cuda.InOut(sigma) |
136 | 18 | equemene | |
137 | 18 | equemene | mod = SourceModule(KERNEL_CODE_CUDA) |
138 | 18 | equemene | |
139 | 18 | equemene | MetropolisCU=mod.get_function("MainLoopOne")
|
140 | 18 | equemene | |
141 | 18 | equemene | start = pycuda.driver.Event() |
142 | 18 | equemene | stop = pycuda.driver.Event() |
143 | 18 | equemene | |
144 | 18 | equemene | SizeX,SizeY=sigma.shape |
145 | 18 | equemene | |
146 | 18 | equemene | start.record() |
147 | 18 | equemene | start.synchronize() |
148 | 18 | equemene | MetropolisCU(sigmaCU, |
149 | 18 | equemene | numpy.float32(T), |
150 | 18 | equemene | numpy.float32(J), |
151 | 18 | equemene | numpy.float32(B), |
152 | 18 | equemene | numpy.uint32(SizeX), |
153 | 18 | equemene | numpy.uint32(SizeY), |
154 | 18 | equemene | numpy.uint32(iterations), |
155 | 18 | equemene | numpy.uint32(nprnd(2**31-1)), |
156 | 18 | equemene | numpy.uint32(nprnd(2**31-1)), |
157 | 18 | equemene | grid=(1,1), |
158 | 18 | equemene | block=(1,1,1)) |
159 | 18 | equemene | |
160 | 18 | equemene | print "%s with %i %s done" % (Alu,1,ParaStyle) |
161 | 18 | equemene | |
162 | 18 | equemene | stop.record() |
163 | 18 | equemene | stop.synchronize() |
164 | 18 | equemene | |
165 | 18 | equemene | #elapsed = stop.time_since(start)*1e-3
|
166 | 18 | equemene | elapsed = start.time_till(stop)*1e-3
|
167 | 18 | equemene | |
168 | 18 | equemene | return(elapsed)
|
169 | 18 | equemene | |
170 | 18 | equemene | |
171 | 18 | equemene | def MetropolisOpenCL(sigma,T,J,B,iterations,ParaStyle,Alu,Device): |
172 | 18 | equemene | |
173 | 18 | equemene | # Initialisation des variables en les CASTant correctement
|
174 | 18 | equemene | |
175 | 18 | equemene | # Je detecte un peripherique GPU dans la liste des peripheriques
|
176 | 18 | equemene | # for platform in cl.get_platforms():
|
177 | 18 | equemene | # for device in platform.get_devices():
|
178 | 18 | equemene | # if cl.device_type.to_string(device.type)=='GPU':
|
179 | 18 | equemene | # GPU=device
|
180 | 18 | equemene | #print "GPU detected: ",device.name
|
181 | 18 | equemene | |
182 | 18 | equemene | HasGPU=False
|
183 | 18 | equemene | Id=1
|
184 | 18 | equemene | # Primary Device selection based on Device Id
|
185 | 18 | equemene | for platform in cl.get_platforms(): |
186 | 18 | equemene | for device in platform.get_devices(): |
187 | 144 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
188 | 144 | equemene | deviceType="xPU"
|
189 | 18 | equemene | if Id==Device and not HasGPU: |
190 | 18 | equemene | GPU=device |
191 | 18 | equemene | print "CPU/GPU selected: ",device.name |
192 | 18 | equemene | HasGPU=True
|
193 | 18 | equemene | Id=Id+1
|
194 | 18 | equemene | |
195 | 18 | equemene | # Je cree le contexte et la queue pour son execution
|
196 | 18 | equemene | # ctx = cl.create_some_context()
|
197 | 18 | equemene | ctx = cl.Context([GPU]) |
198 | 18 | equemene | queue = cl.CommandQueue(ctx, |
199 | 18 | equemene | properties=cl.command_queue_properties.PROFILING_ENABLE) |
200 | 18 | equemene | |
201 | 18 | equemene | # Je recupere les flag possibles pour les buffers
|
202 | 18 | equemene | mf = cl.mem_flags |
203 | 18 | equemene | |
204 | 18 | equemene | # Attention au CAST ! C'est un int8 soit un char en OpenCL !
|
205 | 18 | equemene | sigmaCL = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=sigma) |
206 | 18 | equemene | |
207 | 18 | equemene | MetropolisCL = cl.Program(ctx,KERNEL_CODE_OPENCL).build( \ |
208 | 18 | equemene | options = "-cl-mad-enable -cl-fast-relaxed-math")
|
209 | 18 | equemene | |
210 | 18 | equemene | SizeX,SizeY=sigma.shape |
211 | 18 | equemene | |
212 | 18 | equemene | if ParaStyle=='Blocks': |
213 | 18 | equemene | # Call OpenCL kernel
|
214 | 18 | equemene | # (1,) is Global work size (only 1 work size)
|
215 | 18 | equemene | # (1,) is local work size
|
216 | 18 | equemene | CLLaunch=MetropolisCL.MainLoopOne(queue,(1,),None, |
217 | 18 | equemene | sigmaCL, |
218 | 18 | equemene | numpy.float32(T), |
219 | 18 | equemene | numpy.float32(J), |
220 | 18 | equemene | numpy.float32(B), |
221 | 18 | equemene | numpy.uint32(SizeX), |
222 | 18 | equemene | numpy.uint32(SizeY), |
223 | 18 | equemene | numpy.uint32(iterations), |
224 | 18 | equemene | numpy.uint32(nprnd(2**31-1)), |
225 | 18 | equemene | numpy.uint32(nprnd(2**31-1))) |
226 | 18 | equemene | print "%s with %i %s done" % (Alu,1,ParaStyle) |
227 | 18 | equemene | else:
|
228 | 18 | equemene | # en OpenCL, necessaire de mettre un Global_id identique au local_id
|
229 | 18 | equemene | CLLaunch=MetropolisCL.MainLoopOne(queue,(1,),(1,), |
230 | 18 | equemene | sigmaCL, |
231 | 18 | equemene | numpy.float32(T), |
232 | 18 | equemene | numpy.float32(J), |
233 | 18 | equemene | numpy.float32(B), |
234 | 18 | equemene | numpy.uint32(SizeX), |
235 | 18 | equemene | numpy.uint32(SizeY), |
236 | 18 | equemene | numpy.uint32(iterations), |
237 | 18 | equemene | numpy.uint32(nprnd(2**31-1)), |
238 | 18 | equemene | numpy.uint32(nprnd(2**31-1))) |
239 | 18 | equemene | print "%s with %i %s done" % (Alu,1,ParaStyle) |
240 | 18 | equemene | |
241 | 18 | equemene | CLLaunch.wait() |
242 | 18 | equemene | cl.enqueue_copy(queue, sigma, sigmaCL).wait() |
243 | 18 | equemene | elapsed = 1e-9*(CLLaunch.profile.end - CLLaunch.profile.start)
|
244 | 18 | equemene | sigmaCL.release() |
245 | 18 | equemene | |
246 | 18 | equemene | return(elapsed)
|
247 | 18 | equemene | |
248 | 18 | equemene | def Magnetization(sigma,M): |
249 | 18 | equemene | return(numpy.sum(sigma)/(sigma.shape[0]*sigma.shape[1]*1.0)) |
250 | 18 | equemene | |
251 | 18 | equemene | def Energy(sigma,J): |
252 | 18 | equemene | # Copier et caster
|
253 | 18 | equemene | E=numpy.copy(sigma).astype(numpy.float32) |
254 | 18 | equemene | |
255 | 18 | equemene | # Appel par slice
|
256 | 18 | equemene | E[1:-1,1:-1]=-J*E[1:-1,1:-1]*(E[:-2,1:-1]+E[2:,1:-1]+ |
257 | 18 | equemene | E[1:-1,:-2]+E[1:-1,2:]) |
258 | 18 | equemene | |
259 | 18 | equemene | # Bien nettoyer la peripherie
|
260 | 18 | equemene | E[:,0]=0 |
261 | 18 | equemene | E[:,-1]=0 |
262 | 18 | equemene | E[0,:]=0 |
263 | 18 | equemene | E[-1,:]=0 |
264 | 18 | equemene | |
265 | 18 | equemene | Energy=numpy.sum(E) |
266 | 18 | equemene | |
267 | 18 | equemene | return(Energy/(E.shape[0]*E.shape[1]*1.0)) |
268 | 18 | equemene | |
269 | 18 | equemene | def DisplayCurves(T,E,M,J,B): |
270 | 18 | equemene | |
271 | 18 | equemene | plt.xlabel("Temperature")
|
272 | 18 | equemene | plt.ylabel("Energy")
|
273 | 18 | equemene | |
274 | 18 | equemene | Experience,=plt.plot(T,E,label="Energy")
|
275 | 18 | equemene | |
276 | 18 | equemene | plt.legend() |
277 | 18 | equemene | plt.show() |
278 | 18 | equemene | |
279 | 18 | equemene | |
280 | 18 | equemene | if __name__=='__main__': |
281 | 18 | equemene | |
282 | 18 | equemene | # Set defaults values
|
283 | 18 | equemene | # Alu can be CPU or GPU
|
284 | 18 | equemene | Alu='CPU'
|
285 | 18 | equemene | # Id of GPU : 0 will use the first find !
|
286 | 18 | equemene | Device=0
|
287 | 18 | equemene | # GPU style can be Cuda (Nvidia implementation) or OpenCL
|
288 | 18 | equemene | GpuStyle='OpenCL'
|
289 | 18 | equemene | # Parallel distribution can be on Threads or Blocks
|
290 | 18 | equemene | ParaStyle='Blocks'
|
291 | 18 | equemene | # Coupling factor
|
292 | 18 | equemene | J=1.
|
293 | 18 | equemene | # Magnetic Field
|
294 | 18 | equemene | B=0.
|
295 | 18 | equemene | # Size of Lattice
|
296 | 18 | equemene | Size=256
|
297 | 18 | equemene | # Default Temperatures (start, end, step)
|
298 | 18 | equemene | Tmin=0.1
|
299 | 18 | equemene | Tmax=5
|
300 | 18 | equemene | Tstep=0.1
|
301 | 18 | equemene | # Default Number of Iterations
|
302 | 18 | equemene | Iterations=Size*Size |
303 | 18 | equemene | # Curves is True to print the curves
|
304 | 18 | equemene | Curves=False
|
305 | 18 | equemene | |
306 | 18 | equemene | try:
|
307 | 18 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hcj:b:z:i:s:e:p:a:d:g:t:",["coupling=","magneticfield=","size=","iterations=","tempstart=","tempend=","tempstep=","alu=","gpustyle=","parastyle="]) |
308 | 18 | equemene | except getopt.GetoptError:
|
309 | 18 | equemene | print '%s -j <Coupling Factor> -b <Magnetic Field> -z <Size of Lattice> -i <Iterations> -s <Minimum Temperature> -e <Maximum Temperature> -p <steP Temperature> -c (Print Curves) -a <CPU/GPU> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Blocks> -t <ParaStyle>' % sys.argv[0] |
310 | 18 | equemene | sys.exit(2)
|
311 | 18 | equemene | |
312 | 18 | equemene | |
313 | 18 | equemene | for opt, arg in opts: |
314 | 18 | equemene | if opt == '-h': |
315 | 18 | equemene | print '%s -j <Coupling Factor> -b <Magnetic Field> -z <Size of Lattice> -i <Iterations> -s <Minimum Temperature> -e <Maximum Temperature> -p <steP Temperature> -c (Print Curves) -a <CPU/GPU> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Blocks> -t <ParaStyle>' % sys.argv[0] |
316 | 18 | equemene | sys.exit() |
317 | 18 | equemene | elif opt == '-c': |
318 | 18 | equemene | Curves=True
|
319 | 18 | equemene | elif opt in ("-j", "--coupling"): |
320 | 18 | equemene | J = float(arg)
|
321 | 18 | equemene | elif opt in ("-b", "--magneticfield"): |
322 | 18 | equemene | B = float(arg)
|
323 | 18 | equemene | elif opt in ("-s", "--tempmin"): |
324 | 18 | equemene | Tmin = float(arg)
|
325 | 18 | equemene | elif opt in ("-e", "--tempmax"): |
326 | 18 | equemene | Tmax = float(arg)
|
327 | 18 | equemene | elif opt in ("-p", "--tempstep"): |
328 | 18 | equemene | Tstep = float(arg)
|
329 | 18 | equemene | elif opt in ("-i", "--iterations"): |
330 | 18 | equemene | Iterations = int(arg)
|
331 | 18 | equemene | elif opt in ("-z", "--size"): |
332 | 18 | equemene | Size = int(arg)
|
333 | 18 | equemene | elif opt in ("-a", "--alu"): |
334 | 18 | equemene | Alu = arg |
335 | 18 | equemene | elif opt in ("-d", "--device"): |
336 | 18 | equemene | Device = int(arg)
|
337 | 18 | equemene | elif opt in ("-g", "--gpustyle"): |
338 | 18 | equemene | GpuStyle = arg |
339 | 18 | equemene | elif opt in ("-t", "--parastyle"): |
340 | 18 | equemene | ParaStyle = arg |
341 | 18 | equemene | |
342 | 18 | equemene | if Alu=='CPU' and GpuStyle=='CUDA': |
343 | 18 | equemene | print "Alu can't be CPU for CUDA, set Alu to GPU" |
344 | 18 | equemene | Alu='GPU'
|
345 | 18 | equemene | |
346 | 18 | equemene | if ParaStyle not in ('Blocks','Threads','Hybrid'): |
347 | 18 | equemene | print "%s not exists, ParaStyle set as Threads !" % ParaStyle |
348 | 18 | equemene | ParaStyle='Blocks'
|
349 | 18 | equemene | |
350 | 18 | equemene | print "Compute unit : %s" % Alu |
351 | 18 | equemene | print "Device Identification : %s" % Device |
352 | 18 | equemene | print "GpuStyle used : %s" % GpuStyle |
353 | 18 | equemene | print "Parallel Style used : %s" % ParaStyle |
354 | 18 | equemene | print "Coupling Factor : %s" % J |
355 | 18 | equemene | print "Magnetic Field : %s" % B |
356 | 18 | equemene | print "Size of lattice : %s" % Size |
357 | 18 | equemene | print "Iterations : %s" % Iterations |
358 | 18 | equemene | print "Temperature on start : %s" % Tmin |
359 | 18 | equemene | print "Temperature on end : %s" % Tmax |
360 | 18 | equemene | print "Temperature step : %s" % Tstep |
361 | 18 | equemene | |
362 | 18 | equemene | if GpuStyle=='CUDA': |
363 | 18 | equemene | # For PyCUDA import
|
364 | 18 | equemene | import pycuda.driver as cuda |
365 | 18 | equemene | import pycuda.gpuarray as gpuarray |
366 | 18 | equemene | import pycuda.autoinit |
367 | 18 | equemene | from pycuda.compiler import SourceModule |
368 | 18 | equemene | |
369 | 18 | equemene | if GpuStyle=='OpenCL': |
370 | 18 | equemene | # For PyOpenCL import
|
371 | 18 | equemene | import pyopencl as cl |
372 | 18 | equemene | Id=1
|
373 | 18 | equemene | for platform in cl.get_platforms(): |
374 | 18 | equemene | for device in platform.get_devices(): |
375 | 144 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
376 | 144 | equemene | deviceType="xPU"
|
377 | 18 | equemene | print "Device #%i of type %s : %s" % (Id,deviceType,device.name) |
378 | 18 | equemene | Id=Id+1
|
379 | 18 | equemene | |
380 | 18 | equemene | LAPIMAGE=False
|
381 | 18 | equemene | |
382 | 18 | equemene | sigmaIn=numpy.where(numpy.random.randn(Size,Size)>0,1,-1).astype(numpy.int8) |
383 | 18 | equemene | |
384 | 18 | equemene | ImageOutput(sigmaIn,"Ising2D_Serial_%i_Initial" % (Size))
|
385 | 18 | equemene | |
386 | 18 | equemene | Trange=numpy.arange(Tmin,Tmax+Tstep,Tstep) |
387 | 18 | equemene | |
388 | 18 | equemene | E=[] |
389 | 18 | equemene | M=[] |
390 | 18 | equemene | |
391 | 18 | equemene | for T in Trange: |
392 | 18 | equemene | sigma=numpy.copy(sigmaIn) |
393 | 18 | equemene | if GpuStyle=='CUDA': |
394 | 18 | equemene | duration=MetropolisCuda(sigma,T,J,B,Iterations,ParaStyle,Alu,Device) |
395 | 18 | equemene | else:
|
396 | 18 | equemene | duration=MetropolisOpenCL(sigma,T,J,B,Iterations,ParaStyle,Alu,Device) |
397 | 18 | equemene | |
398 | 18 | equemene | E=numpy.append(E,Energy(sigma,J)) |
399 | 18 | equemene | M=numpy.append(M,Magnetization(sigma,B)) |
400 | 18 | equemene | ImageOutput(sigma,"Ising2D_Serial_%i_%1.1f_Final" % (Size,T))
|
401 | 18 | equemene | |
402 | 18 | equemene | print "CPU Time : %f" % (duration) |
403 | 18 | equemene | print "Total Energy at Temperature %f : %f" % (T,E[-1]) |
404 | 18 | equemene | print "Total Magnetization at Temperature %f : %f" % (T,M[-1]) |
405 | 18 | equemene | |
406 | 18 | equemene | if Curves:
|
407 | 18 | equemene | DisplayCurves(Trange,E,M,J,B) |
408 | 18 | equemene | |
409 | 18 | equemene | # Save output
|
410 | 18 | equemene | numpy.savez("Ising2D_Serial_%i_%.8i" % (Size,Iterations),(Trange,E,M))
|