root / Ising / GPU / Ising2D-GPU-Global.py @ 144
Historique | Voir | Annoter | Télécharger (8,9 ko)
1 | 93 | equemene | #!/usr/bin/env python
|
---|---|---|---|
2 | 93 | equemene | #
|
3 | 93 | equemene | # Ising2D model using PyOpenCL
|
4 | 93 | equemene | #
|
5 | 93 | equemene | # CC BY-NC-SA 2011 : <emmanuel.quemener@ens-lyon.fr>
|
6 | 93 | equemene | #
|
7 | 93 | equemene | # Thanks to Andreas Klockner for PyOpenCL:
|
8 | 93 | equemene | # http://mathema.tician.de/software/pyopencl
|
9 | 93 | equemene | #
|
10 | 93 | equemene | # Interesting links:
|
11 | 93 | equemene | # http://viennacl.sourceforge.net/viennacl-documentation.html
|
12 | 93 | equemene | # http://enja.org/2011/02/22/adventures-in-pyopencl-part-1-getting-started-with-python/
|
13 | 93 | equemene | |
14 | 93 | equemene | import pyopencl as cl |
15 | 93 | equemene | import numpy |
16 | 93 | equemene | from numpy.random import randint as nprnd |
17 | 93 | equemene | from PIL import Image |
18 | 93 | equemene | import time |
19 | 93 | equemene | import sys |
20 | 93 | equemene | import getopt |
21 | 93 | equemene | import matplotlib.pyplot as plt |
22 | 93 | equemene | |
23 | 93 | equemene | # 2097152 on HD5850 (with 1GB of RAM)
|
24 | 93 | equemene | # 262144 on GT218
|
25 | 93 | equemene | #STEP=262144
|
26 | 93 | equemene | #STEP=1048576
|
27 | 93 | equemene | #STEP=2097152
|
28 | 93 | equemene | #STEP=4194304
|
29 | 93 | equemene | #STEP=8388608
|
30 | 93 | equemene | STEP=16777216
|
31 | 93 | equemene | |
32 | 93 | equemene | KERNEL_CODE="""
|
33 | 93 | equemene |
|
34 | 93 | equemene | // Marsaglia RNG very simple implementation
|
35 | 93 | equemene |
|
36 | 93 | equemene | #define znew (z=36969*(z&65535)+(z>>16))
|
37 | 93 | equemene | #define wnew (w=18000*(w&65535)+(w>>16))
|
38 | 93 | equemene | #define MWC ((znew<<16)+wnew )
|
39 | 93 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
40 | 93 | equemene |
|
41 | 93 | equemene | __kernel void MainLoop(__global int *s,float J,float B,float T,uint size,
|
42 | 93 | equemene | uint iterations,uint seed_w,uint seed_z)
|
43 | 93 | equemene | {
|
44 | 93 | equemene | uint z=seed_z;
|
45 | 93 | equemene | uint w=seed_w;
|
46 | 93 | equemene |
|
47 | 93 | equemene | for (uint i=0;i<iterations;i++) {
|
48 | 93 | equemene |
|
49 | 93 | equemene | uint x=(uint)(MWC%size) ;
|
50 | 93 | equemene | uint y=(uint)(MWC%size) ;
|
51 | 93 | equemene |
|
52 | 93 | equemene | int p=s[x+size*y];
|
53 | 93 | equemene |
|
54 | 93 | equemene | int d=s[x+size*((y+1)%size)];
|
55 | 93 | equemene | int u=s[x+size*((y-1)%size)];
|
56 | 93 | equemene | int l=s[((x-1)%size)+size*y];
|
57 | 93 | equemene | int r=s[((x+1)%size)+size*y];
|
58 | 93 | equemene |
|
59 | 93 | equemene | float DeltaE=p*(2.0f*J*(u+d+l+r)+B);
|
60 | 93 | equemene |
|
61 | 93 | equemene | int factor=((DeltaE < 0.0f) || (MWCfp < exp(-DeltaE/T))) ? -1:1;
|
62 | 93 | equemene | s[x%size+size*(y%size)] = factor*p;
|
63 | 93 | equemene | // barrier(CLK_GLOBAL_MEM_FENCE);
|
64 | 93 | equemene | }
|
65 | 93 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
66 | 93 | equemene |
|
67 | 93 | equemene | }
|
68 | 93 | equemene | """
|
69 | 93 | equemene | |
70 | 93 | equemene | def ImageOutput(sigma,prefix): |
71 | 93 | equemene | |
72 | 93 | equemene | Max=sigma.max() |
73 | 93 | equemene | Min=sigma.min() |
74 | 93 | equemene | |
75 | 93 | equemene | # Normalize value as 8bits Integer
|
76 | 93 | equemene | SigmaInt=(255*(sigma-Min)/(Max-Min)).astype('uint8') |
77 | 93 | equemene | image = Image.fromarray(SigmaInt) |
78 | 93 | equemene | image.save("%s.jpg" % prefix)
|
79 | 93 | equemene | |
80 | 93 | equemene | def Metropolis(sigma,J,B,T,iterations,Device): |
81 | 93 | equemene | |
82 | 93 | equemene | # Initialisation des variables en les CASTant correctement
|
83 | 93 | equemene | |
84 | 93 | equemene | # Je detecte un peripherique GPU dans la liste des peripheriques
|
85 | 93 | equemene | Id=1
|
86 | 93 | equemene | HasXPU=False
|
87 | 93 | equemene | for platform in cl.get_platforms(): |
88 | 93 | equemene | for device in platform.get_devices(): |
89 | 93 | equemene | if Id==Device:
|
90 | 93 | equemene | XPU=device |
91 | 93 | equemene | print "CPU/GPU selected: ",device.name.lstrip() |
92 | 93 | equemene | HasXPU=True
|
93 | 93 | equemene | Id+=1
|
94 | 93 | equemene | |
95 | 93 | equemene | if HasXPU==False: |
96 | 93 | equemene | print "No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1) |
97 | 93 | equemene | sys.exit() |
98 | 93 | equemene | |
99 | 93 | equemene | # Je cree le contexte et la queue pour son execution
|
100 | 93 | equemene | ctx = cl.Context([XPU]) |
101 | 93 | equemene | queue = cl.CommandQueue(ctx, |
102 | 93 | equemene | properties=cl.command_queue_properties.PROFILING_ENABLE) |
103 | 93 | equemene | |
104 | 93 | equemene | # Je recupere les flag possibles pour les buffers
|
105 | 93 | equemene | mf = cl.mem_flags |
106 | 93 | equemene | |
107 | 93 | equemene | sigmaCL = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=sigma) |
108 | 93 | equemene | |
109 | 93 | equemene | MetropolisCL = cl.Program(ctx,KERNEL_CODE).build( |
110 | 93 | equemene | options = "-cl-mad-enable -cl-fast-relaxed-math")
|
111 | 93 | equemene | |
112 | 93 | equemene | i=0
|
113 | 93 | equemene | step=STEP |
114 | 93 | equemene | duration=0.
|
115 | 93 | equemene | |
116 | 93 | equemene | while (step*i < iterations):
|
117 | 93 | equemene | # Call OpenCL kernel
|
118 | 93 | equemene | # (1,) is global work size (only 1 work size)
|
119 | 93 | equemene | # (1,) is local work size
|
120 | 93 | equemene | # sigmaCL is lattice translated in CL format
|
121 | 93 | equemene | # step is number of iterations
|
122 | 93 | equemene | |
123 | 93 | equemene | start_time=time.time() |
124 | 93 | equemene | CLLaunch=MetropolisCL.MainLoop(queue,(1,),None, |
125 | 93 | equemene | sigmaCL, |
126 | 93 | equemene | numpy.float32(J),numpy.float32(B), |
127 | 93 | equemene | numpy.float32(T), |
128 | 93 | equemene | numpy.uint32(sigma.shape[0]),
|
129 | 93 | equemene | numpy.uint32(step), |
130 | 93 | equemene | numpy.uint32(nprnd(2**32)), |
131 | 93 | equemene | numpy.uint32(nprnd(2**32))) |
132 | 93 | equemene | CLLaunch.wait() |
133 | 93 | equemene | # Does not seem to work under AMD/ATI
|
134 | 93 | equemene | # elapsed = 1e-9*(CLLaunch.profile.end - CLLaunch.profile.start)
|
135 | 93 | equemene | elapsed = time.time()-start_time |
136 | 93 | equemene | print "Iteration %i with T=%f and %i iterations in %f: " % (i,T,step,elapsed) |
137 | 93 | equemene | if LAPIMAGE:
|
138 | 93 | equemene | cl.enqueue_copy(queue, sigma, sigmaCL).wait() |
139 | 93 | equemene | ImageOutput(sigma,"Ising2D_GPU_Global_%i_%1.1f_%.3i_Lap" %
|
140 | 93 | equemene | (SIZE,T,i)) |
141 | 93 | equemene | i=i+1
|
142 | 93 | equemene | duration=duration+elapsed |
143 | 93 | equemene | |
144 | 93 | equemene | cl.enqueue_copy(queue, sigma, sigmaCL).wait() |
145 | 93 | equemene | sigmaCL.release() |
146 | 93 | equemene | |
147 | 93 | equemene | return(duration)
|
148 | 93 | equemene | |
149 | 93 | equemene | def Magnetization(sigma,M): |
150 | 93 | equemene | return(numpy.sum(sigma)/(sigma.shape[0]*sigma.shape[1]*1.0)) |
151 | 93 | equemene | |
152 | 93 | equemene | def Energy(sigma,J,B): |
153 | 93 | equemene | # Copier et caster
|
154 | 93 | equemene | E=numpy.copy(sigma).astype(numpy.float32) |
155 | 93 | equemene | |
156 | 93 | equemene | # Appel par slice
|
157 | 93 | equemene | E[1:-1,1:-1]=E[1:-1,1:-1]*(2.0*J*(E[:-2,1:-1]+E[2:,1:-1]+ |
158 | 93 | equemene | E[1:-1,:-2]+E[1:-1,2:])+B) |
159 | 93 | equemene | |
160 | 93 | equemene | # Bien nettoyer la peripherie
|
161 | 93 | equemene | E[:,0]=0 |
162 | 93 | equemene | E[:,-1]=0 |
163 | 93 | equemene | E[0,:]=0 |
164 | 93 | equemene | E[-1,:]=0 |
165 | 93 | equemene | |
166 | 93 | equemene | Energy=numpy.sum(E) |
167 | 93 | equemene | |
168 | 93 | equemene | return(Energy/(E.shape[0]*E.shape[1]*1.0)) |
169 | 93 | equemene | |
170 | 93 | equemene | def CriticalT(T,E): |
171 | 93 | equemene | |
172 | 93 | equemene | Epoly=numpy.poly1d(numpy.polyfit(T,E,T.size/3))
|
173 | 93 | equemene | dEpoly=numpy.diff(Epoly(T)) |
174 | 93 | equemene | dEpoly=numpy.insert(dEpoly,0,0) |
175 | 93 | equemene | return(T[numpy.argmin(dEpoly)])
|
176 | 93 | equemene | |
177 | 93 | equemene | def DisplayCurves(T,E,M,J,B): |
178 | 93 | equemene | |
179 | 93 | equemene | plt.xlabel("Temperature")
|
180 | 93 | equemene | plt.ylabel("Energy")
|
181 | 93 | equemene | |
182 | 93 | equemene | Experience,=plt.plot(T,E,label="Energy")
|
183 | 93 | equemene | |
184 | 93 | equemene | plt.legend() |
185 | 93 | equemene | plt.show() |
186 | 93 | equemene | |
187 | 93 | equemene | if __name__=='__main__': |
188 | 93 | equemene | |
189 | 93 | equemene | # Set defaults values
|
190 | 93 | equemene | # Coupling factor
|
191 | 93 | equemene | J=1.
|
192 | 93 | equemene | # External Magnetic Field is null
|
193 | 93 | equemene | B=0.
|
194 | 93 | equemene | # Size of Lattice
|
195 | 93 | equemene | Size=256
|
196 | 93 | equemene | # Default Temperatures (start, end, step)
|
197 | 93 | equemene | Tmin=0.1
|
198 | 93 | equemene | Tmax=5
|
199 | 93 | equemene | Tstep=0.1
|
200 | 93 | equemene | # Default Number of Iterations
|
201 | 95 | equemene | Iterations=Size*Size*Size |
202 | 93 | equemene | # Default Device is first
|
203 | 93 | equemene | Device=1
|
204 | 93 | equemene | |
205 | 93 | equemene | # Curves is True to print the curves
|
206 | 93 | equemene | Curves=False
|
207 | 93 | equemene | |
208 | 93 | equemene | OCL_vendor={} |
209 | 93 | equemene | OCL_type={} |
210 | 93 | equemene | OCL_description={} |
211 | 93 | equemene | |
212 | 93 | equemene | try:
|
213 | 93 | equemene | import pyopencl as cl |
214 | 93 | equemene | |
215 | 93 | equemene | print "\nHere are available OpenCL devices:" |
216 | 93 | equemene | Id=1
|
217 | 93 | equemene | for platform in cl.get_platforms(): |
218 | 93 | equemene | for device in platform.get_devices(): |
219 | 93 | equemene | OCL_vendor[Id]=platform.vendor.lstrip().rstrip() |
220 | 144 | equemene | #OCL_type[Id]=cl.device_type.to_string(device.type)
|
221 | 144 | equemene | OCL_type[Id]="xPU"
|
222 | 93 | equemene | OCL_description[Id]=device.name.lstrip().rstrip() |
223 | 93 | equemene | print "* Device #%i from %s of type %s : %s" % (Id,OCL_vendor[Id],OCL_type[Id],OCL_description[Id]) |
224 | 93 | equemene | Id=Id+1
|
225 | 93 | equemene | OCL_MaxDevice=Id-1
|
226 | 93 | equemene | print
|
227 | 93 | equemene | |
228 | 93 | equemene | except ImportError: |
229 | 93 | equemene | print "Your platform does not seem to support OpenCL" |
230 | 93 | equemene | sys.exit(0)
|
231 | 93 | equemene | |
232 | 93 | equemene | try:
|
233 | 93 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hcj:b:z:i:s:e:p:d:",["coupling=","magneticfield=","size=","iterations=","tempstart=","tempend=","tempstep=","units",'device=']) |
234 | 93 | equemene | except getopt.GetoptError:
|
235 | 93 | equemene | print '%s -d <Device Id> -j <Coupling Factor> -b <Magnetic Field> -z <Size of Square Lattice> -i <Iterations> -s <Minimum Temperature> -e <Maximum Temperature> -p <steP Temperature> -c (Print Curves)' % sys.argv[0] |
236 | 93 | equemene | sys.exit(2)
|
237 | 93 | equemene | |
238 | 93 | equemene | for opt, arg in opts: |
239 | 93 | equemene | if opt == '-h': |
240 | 93 | equemene | print '%s -d <Device Id> -j <Coupling Factor> -b <Magnetic Field> -z <Size of Square Lattice> -i <Iterations> -s <Minimum Temperature> -e <Maximum Temperature> -p <steP Temperature> -c (Print Curves)' % sys.argv[0] |
241 | 93 | equemene | sys.exit() |
242 | 93 | equemene | elif opt == '-c': |
243 | 93 | equemene | Curves=True
|
244 | 93 | equemene | elif opt in ("-d", "--device"): |
245 | 93 | equemene | Device = int(arg)
|
246 | 93 | equemene | if Device>OCL_MaxDevice:
|
247 | 93 | equemene | "Device #%s seems not to be available !"
|
248 | 93 | equemene | sys.exit() |
249 | 93 | equemene | elif opt in ("-j", "--coupling"): |
250 | 93 | equemene | J = float(arg)
|
251 | 93 | equemene | elif opt in ("-b", "--magneticfield"): |
252 | 93 | equemene | B = float(arg)
|
253 | 93 | equemene | elif opt in ("-s", "--tempmin"): |
254 | 93 | equemene | Tmin = float(arg)
|
255 | 93 | equemene | elif opt in ("-e", "--tempmax"): |
256 | 93 | equemene | Tmax = arg |
257 | 93 | equemene | elif opt in ("-p", "--tempstep"): |
258 | 93 | equemene | Tstep = numpy.uint32(arg) |
259 | 93 | equemene | elif opt in ("-i", "--iterations"): |
260 | 93 | equemene | Iterations = int(arg)
|
261 | 93 | equemene | elif opt in ("-z", "--size"): |
262 | 93 | equemene | Size = int(arg)
|
263 | 93 | equemene | |
264 | 93 | equemene | print "Here are parameters of simulation:" |
265 | 93 | equemene | print "* Device selected #%s: %s of type %s from %s" % (Device,OCL_description[Device],OCL_type[Device],OCL_vendor[Device]) |
266 | 93 | equemene | print "* Coupling Factor J : %s" % J |
267 | 93 | equemene | print "* Magnetic Field B : %s" % B |
268 | 93 | equemene | print "* Size of lattice : %sx%s" % (Size,Size) |
269 | 93 | equemene | print "* Iterations : %s" % Iterations |
270 | 93 | equemene | print "* Temperatures from %s to %s by %s" % (Tmin,Tmax,Tstep) |
271 | 93 | equemene | |
272 | 93 | equemene | LAPIMAGE=False
|
273 | 93 | equemene | |
274 | 93 | equemene | if Iterations<STEP:
|
275 | 93 | equemene | STEP=Iterations |
276 | 93 | equemene | |
277 | 93 | equemene | sigmaIn=numpy.where(numpy.random.randn(Size,Size)>0,1,-1).astype (numpy.int32) |
278 | 93 | equemene | |
279 | 93 | equemene | ImageOutput(sigmaIn,"Ising2D_GPU_Global_%i_Initial" % (Size))
|
280 | 93 | equemene | |
281 | 93 | equemene | Trange=numpy.arange(Tmin,Tmax+Tstep,Tstep) |
282 | 93 | equemene | |
283 | 93 | equemene | E=[] |
284 | 93 | equemene | M=[] |
285 | 93 | equemene | |
286 | 93 | equemene | for T in Trange: |
287 | 93 | equemene | sigma=numpy.copy(sigmaIn) |
288 | 93 | equemene | duration=Metropolis(sigma,J,B,T,Iterations,Device) |
289 | 93 | equemene | E=numpy.append(E,Energy(sigma,J,B)) |
290 | 93 | equemene | M=numpy.append(M,Magnetization(sigma,B)) |
291 | 93 | equemene | ImageOutput(sigma,"Ising2D_GPU_Global_%i_%1.1f_Final" % (Size,T))
|
292 | 93 | equemene | print "GPU Time : %f" % (duration) |
293 | 93 | equemene | print "Total Energy at Temperature %f : %f" % (T,E[-1]) |
294 | 93 | equemene | print "Total Magnetization at Temperature %f : %f" % (T,M[-1]) |
295 | 93 | equemene | |
296 | 93 | equemene | # Save output
|
297 | 93 | equemene | numpy.savez("Ising2D_GPU_Global_%i_%.8i" % (Size,Iterations),(Trange,E,M))
|
298 | 93 | equemene | |
299 | 93 | equemene | # Estimate Critical temperature
|
300 | 93 | equemene | print "The critical temperature on %ix%i lattice with J=%f, B=%f is %f " % (Size,Size,J,B,CriticalT(Trange,E)) |
301 | 93 | equemene | |
302 | 93 | equemene | if Curves:
|
303 | 93 | equemene | DisplayCurves(Trange,E,M,J,B) |