root / Epidevomath / vector8.py @ 109
Historique | Voir | Annoter | Télécharger (5,21 ko)
1 | 109 | equemene | import numpy as np |
---|---|---|---|
2 | 109 | equemene | import pyopencl as cl |
3 | 109 | equemene | import pyopencl.array as cl_array |
4 | 109 | equemene | from numpy.random import randint as nprnd |
5 | 109 | equemene | |
6 | 109 | equemene | deviceID = 0
|
7 | 109 | equemene | platformID = 0
|
8 | 109 | equemene | workGroup=(1,1) |
9 | 109 | equemene | |
10 | 109 | equemene | N = 32768
|
11 | 109 | equemene | MyData = np.zeros(N, dtype=cl_array.vec.float8) |
12 | 109 | equemene | |
13 | 109 | equemene | dev = cl.get_platforms()[platformID].get_devices()[deviceID] |
14 | 109 | equemene | |
15 | 109 | equemene | ctx = cl.Context([dev]) |
16 | 109 | equemene | queue = cl.CommandQueue(ctx) |
17 | 109 | equemene | mf = cl.mem_flags |
18 | 109 | equemene | clData = cl.Buffer(ctx, mf.READ_WRITE, MyData.nbytes) |
19 | 109 | equemene | |
20 | 109 | equemene | MyRoutines = cl.Program(ctx, """
|
21 | 109 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
22 | 109 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
23 | 109 | equemene | #define MWC (znew+wnew)
|
24 | 109 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
25 | 109 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
26 | 109 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
27 | 109 | equemene |
|
28 | 109 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
29 | 109 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
30 | 109 | equemene | #define SHR3fp SHR3 * 2.328306435454494e-10f
|
31 | 109 | equemene | #define CONGfp CONG * 2.328306435454494e-10f
|
32 | 109 | equemene |
|
33 | 109 | equemene | #define LENGTH 1.
|
34 | 109 | equemene |
|
35 | 109 | equemene | #define PI 3.14159265359
|
36 | 109 | equemene |
|
37 | 109 | equemene | #define SMALL_NUM 0.0000001
|
38 | 109 | equemene |
|
39 | 109 | equemene | __kernel void SplutterSpace(__global float8* clData,
|
40 | 109 | equemene | uint seed_z,uint seed_w)
|
41 | 109 | equemene | {
|
42 | 109 | equemene | int gid = get_global_id(0);
|
43 | 109 | equemene | uint z=seed_z+(uint)gid;
|
44 | 109 | equemene | uint w=seed_w-(uint)gid;
|
45 | 109 | equemene |
|
46 | 109 | equemene | clData[gid].s01234567 = (float8) (MWCfp,MWCfp,MWCfp,0.,0.,0.,0.,0.);
|
47 | 109 | equemene | }
|
48 | 109 | equemene |
|
49 | 109 | equemene | __kernel void ExtendSegment(__global float8* clData,
|
50 | 109 | equemene | uint seed_z,uint seed_w)
|
51 | 109 | equemene | {
|
52 | 109 | equemene | int gid = get_global_id(0);
|
53 | 109 | equemene | uint z=seed_z+(uint)gid;
|
54 | 109 | equemene | uint w=seed_w-(uint)gid;
|
55 | 109 | equemene |
|
56 | 109 | equemene | float theta=MWCfp*PI;
|
57 | 109 | equemene | float phi=MWCfp*PI*2.;
|
58 | 109 | equemene | float sinTheta=sin(theta);
|
59 | 109 | equemene | clData[gid].s4=clData[gid].s0+LENGTH*sinTheta*cos(phi);
|
60 | 109 | equemene | clData[gid].s5=clData[gid].s1+LENGTH*sinTheta*sin(phi);
|
61 | 109 | equemene | clData[gid].s6=clData[gid].s2+LENGTH*cos(theta);
|
62 | 109 | equemene |
|
63 | 109 | equemene | }
|
64 | 109 | equemene |
|
65 | 109 | equemene | __kernel void EstimateLength(__global float8* clData,__global float* clSize)
|
66 | 109 | equemene | {
|
67 | 109 | equemene | int gid = get_global_id(0);
|
68 | 109 | equemene |
|
69 | 109 | equemene | clSize[gid]=distance(clData[gid].lo,clData[gid].hi);
|
70 | 109 | equemene | }
|
71 | 109 | equemene |
|
72 | 109 | equemene | // Get from http://geomalgorithms.com/a07-_distance.html
|
73 | 109 | equemene |
|
74 | 109 | equemene | __kernel void ShortestDistance(__global float8* clData,__global float* clDistance)
|
75 | 109 | equemene | {
|
76 | 109 | equemene | int gidx = get_global_id(0);
|
77 | 109 | equemene | int ggsz = get_global_size(0);
|
78 | 109 | equemene | int gidy = get_global_id(1);
|
79 | 109 | equemene |
|
80 | 109 | equemene | float4 u = clData[gidx].hi - clData[gidx].lo;
|
81 | 109 | equemene | float4 v = clData[gidy].hi - clData[gidy].lo;
|
82 | 109 | equemene | float4 w = clData[gidx].lo - clData[gidy].lo;
|
83 | 109 | equemene |
|
84 | 109 | equemene | float a = dot(u,u); // always >= 0
|
85 | 109 | equemene | float b = dot(u,v);
|
86 | 109 | equemene | float c = dot(v,v); // always >= 0
|
87 | 109 | equemene | float d = dot(u,w);
|
88 | 109 | equemene | float e = dot(v,w);
|
89 | 109 | equemene |
|
90 | 109 | equemene | float D = a*c - b*b; // always >= 0
|
91 | 109 | equemene | float sc, sN, sD = D; // sc = sN / sD, default sD = D >= 0
|
92 | 109 | equemene | float tc, tN, tD = D; // tc = tN / tD, default tD = D >= 0
|
93 | 109 | equemene |
|
94 | 109 | equemene | // compute the line parameters of the two closest points
|
95 | 109 | equemene | if (D < SMALL_NUM) { // the lines are almost parallel
|
96 | 109 | equemene | sN = 0.0; // force using point P0 on segment S1
|
97 | 109 | equemene | sD = 1.0; // to prevent possible division by 0.0 later
|
98 | 109 | equemene | tN = e;
|
99 | 109 | equemene | tD = c;
|
100 | 109 | equemene | }
|
101 | 109 | equemene | else { // get the closest points on the infinite lines
|
102 | 109 | equemene | sN = (b*e - c*d);
|
103 | 109 | equemene | tN = (a*e - b*d);
|
104 | 109 | equemene | if (sN < 0.0) { // sc < 0 => the s=0 edge is visible
|
105 | 109 | equemene | sN = 0.0;
|
106 | 109 | equemene | tN = e;
|
107 | 109 | equemene | tD = c;
|
108 | 109 | equemene | }
|
109 | 109 | equemene | else if (sN > sD) { // sc > 1 => the s=1 edge is visible
|
110 | 109 | equemene | sN = sD;
|
111 | 109 | equemene | tN = e + b;
|
112 | 109 | equemene | tD = c;
|
113 | 109 | equemene | }
|
114 | 109 | equemene | }
|
115 | 109 | equemene |
|
116 | 109 | equemene | if (tN < 0.0) { // tc < 0 => the t=0 edge is visible
|
117 | 109 | equemene | tN = 0.0;
|
118 | 109 | equemene | // recompute sc for this edge
|
119 | 109 | equemene | if (-d < 0.0)
|
120 | 109 | equemene | sN = 0.0;
|
121 | 109 | equemene | else if (-d > a)
|
122 | 109 | equemene | sN = sD;
|
123 | 109 | equemene | else {
|
124 | 109 | equemene | sN = -d;
|
125 | 109 | equemene | sD = a;
|
126 | 109 | equemene | }
|
127 | 109 | equemene | }
|
128 | 109 | equemene | else if (tN > tD) { // tc > 1 => the t=1 edge is visible
|
129 | 109 | equemene | tN = tD;
|
130 | 109 | equemene | // recompute sc for this edge
|
131 | 109 | equemene | if ((-d + b) < 0.0)
|
132 | 109 | equemene | sN = 0;
|
133 | 109 | equemene | else if ((-d + b) > a)
|
134 | 109 | equemene | sN = sD;
|
135 | 109 | equemene | else {
|
136 | 109 | equemene | sN = (-d + b);
|
137 | 109 | equemene | sD = a;
|
138 | 109 | equemene | }
|
139 | 109 | equemene | }
|
140 | 109 | equemene | // finally do the division to get sc and tc
|
141 | 109 | equemene | sc = (fabs(sN) < SMALL_NUM ? 0.0 : sN / sD);
|
142 | 109 | equemene | tc = (fabs(tN) < SMALL_NUM ? 0.0 : tN / tD);
|
143 | 109 | equemene |
|
144 | 109 | equemene | // get the difference of the two closest points
|
145 | 109 | equemene | float4 dP = w + (sc * u) - (tc * v); // = S1(sc) - S2(tc)
|
146 | 109 | equemene |
|
147 | 109 | equemene | clDistance[ggsz*gidy+gidx]=length(dP); // return the closest distance
|
148 | 109 | equemene | }
|
149 | 109 | equemene |
|
150 | 109 | equemene | """).build()
|
151 | 109 | equemene | |
152 | 109 | equemene | print 'Tous au meme endroit',MyData |
153 | 109 | equemene | |
154 | 109 | equemene | MyRoutines.SplutterSpace(queue, (N,1), None, clData, numpy.uint32(nprnd(2**32)),numpy.uint32(nprnd(2**32))) |
155 | 109 | equemene | |
156 | 109 | equemene | cl.enqueue_copy(queue, MyData, clData) |
157 | 109 | equemene | |
158 | 109 | equemene | print 'Tous distribues',MyData |
159 | 109 | equemene | |
160 | 109 | equemene | MyRoutines.ExtendSegment(queue, (N,1), None, clData,numpy.uint32(nprnd(2**32)),numpy.uint32(nprnd(2**32))) |
161 | 109 | equemene | |
162 | 109 | equemene | cl.enqueue_copy(queue, MyData, clData) |
163 | 109 | equemene | |
164 | 109 | equemene | print 'Tous avec leur extremite',MyData |
165 | 109 | equemene | |
166 | 109 | equemene | MySize = np.zeros(len(MyData), dtype=numpy.float32)
|
167 | 109 | equemene | clSize = cl.Buffer(ctx, mf.READ_WRITE, MySize.nbytes) |
168 | 109 | equemene | |
169 | 109 | equemene | MyRoutines.EstimateLength(queue, (N,1), None, clData, clSize) |
170 | 109 | equemene | cl.enqueue_copy(queue, MySize, clSize) |
171 | 109 | equemene | |
172 | 109 | equemene | print 'La distance de chacun avec son extremite',MySize |
173 | 109 | equemene | |
174 | 109 | equemene | MyDistance = np.zeros(len(MyData)*len(MyData), dtype=numpy.float32) |
175 | 109 | equemene | clDistance = cl.Buffer(ctx, mf.READ_WRITE, MyDistance.nbytes) |
176 | 109 | equemene | |
177 | 109 | equemene | MyRoutines.ShortestDistance(queue, (N,N), None, clData, clDistance)
|
178 | 109 | equemene | cl.enqueue_copy(queue, MyDistance, clDistance) |
179 | 109 | equemene | |
180 | 109 | equemene | MyDistance=numpy.reshape(MyDistance,(N,N)) |
181 | 109 | equemene | |
182 | 109 | equemene | print 'La distance de chacun',MyDistance |