root / Pi / XPU / PiXpuThreads.py
Historique | Voir | Annoter | Télécharger (11,76 ko)
1 |
#!/usr/bin/env python3
|
---|---|
2 |
|
3 |
#
|
4 |
# Pi-by-MonteCarlo using PyCUDA/PyOpenCL
|
5 |
#
|
6 |
# CC BY-NC-SA 2011 : Emmanuel QUEMENER <emmanuel.quemener@gmail.com>
|
7 |
# Cecill v2 : Emmanuel QUEMENER <emmanuel.quemener@gmail.com>
|
8 |
#
|
9 |
# Thanks to Andreas Klockner for PyCUDA:
|
10 |
# http://mathema.tician.de/software/pycuda
|
11 |
# Thanks to Andreas Klockner for PyOpenCL:
|
12 |
# http://mathema.tician.de/software/pyopencl
|
13 |
#
|
14 |
|
15 |
# 2013-01-01 : problems with launch timeout
|
16 |
# http://stackoverflow.com/questions/497685/how-do-you-get-around-the-maximum-cuda-run-time
|
17 |
# Option "Interactive" "0" in /etc/X11/xorg.conf
|
18 |
|
19 |
# Common tools
|
20 |
import numpy |
21 |
from numpy.random import randint as nprnd |
22 |
import sys |
23 |
import getopt |
24 |
import time |
25 |
import math |
26 |
import itertools |
27 |
from socket import gethostname |
28 |
|
29 |
from threading import Thread |
30 |
|
31 |
from PiXPU import * |
32 |
|
33 |
class threadWithReturn(Thread): |
34 |
def __init__(self, *args, **kwargs): |
35 |
super(threadWithReturn, self).__init__(*args, **kwargs) |
36 |
self._return = None |
37 |
|
38 |
def run(self): |
39 |
if self._target is not None: |
40 |
self._return = self._target(*self._args, **self._kwargs) |
41 |
|
42 |
def join(self, *args, **kwargs): |
43 |
super(threadWithReturn, self).join(*args, **kwargs) |
44 |
return self._return |
45 |
|
46 |
if __name__=='__main__': |
47 |
|
48 |
# Set defaults values
|
49 |
|
50 |
# Id of Device : 1 is for first find !
|
51 |
Device=1
|
52 |
# GPU style can be Cuda (Nvidia implementation) or OpenCL
|
53 |
GpuStyle='OpenCL'
|
54 |
# Iterations is integer
|
55 |
Iterations=10000000
|
56 |
# BlocksBlocks in first number of Blocks to explore
|
57 |
BlocksBegin=1
|
58 |
# BlocksEnd is last number of Blocks to explore
|
59 |
BlocksEnd=16
|
60 |
# BlocksStep is the step of Blocks to explore
|
61 |
BlocksStep=1
|
62 |
# ThreadsBlocks in first number of Blocks to explore
|
63 |
ThreadsBegin=1
|
64 |
# ThreadsEnd is last number of Blocks to explore
|
65 |
ThreadsEnd=1
|
66 |
# ThreadsStep is the step of Blocks to explore
|
67 |
ThreadsStep=1
|
68 |
# Redo is the times to redo the test to improve metrology
|
69 |
Redo=1
|
70 |
# OutMetrology is method for duration estimation : False is GPU inside
|
71 |
OutMetrology=False
|
72 |
Metrology='InMetro'
|
73 |
# Curves is True to print the curves
|
74 |
Curves=False
|
75 |
# Fit is True to print the curves
|
76 |
Fit=False
|
77 |
# Marsaglia RNG
|
78 |
RNG='MWC'
|
79 |
# Seeds
|
80 |
Seeds=110271,101008 |
81 |
# Value type : INT32, INT64, FP32, FP64
|
82 |
ValueType='FP32'
|
83 |
# Inside based on If
|
84 |
IfThen=False
|
85 |
|
86 |
HowToUse='%s -c (Print Curves) -k (Case On IfThen) -d <DeviceId> -g <CUDA/OpenCL> -i <Iterations> -b <BlocksBegin> -e <BlocksEnd> -s <BlocksStep> -f <ThreadsFirst> -l <ThreadsLast> -t <ThreadssTep> -r <RedoToImproveStats> -m <SHR3/CONG/MWC/KISS> -v <INT32/INT64/FP32/FP64>'
|
87 |
|
88 |
try:
|
89 |
opts, args = getopt.getopt(sys.argv[1:],"hckg:i:b:e:s:f:l:t:r:d:m:v:",["gpustyle=","iterations=","blocksBegin=","blocksEnd=","blocksStep=","threadsFirst=","threadsLast=","threadssTep=","redo=","device=","marsaglia=","valuetype="]) |
90 |
except getopt.GetoptError:
|
91 |
print(HowToUse % sys.argv[0])
|
92 |
sys.exit(2)
|
93 |
|
94 |
# List of Devices
|
95 |
Devices=[] |
96 |
Alu={} |
97 |
|
98 |
for opt, arg in opts: |
99 |
if opt == '-h': |
100 |
print(HowToUse % sys.argv[0])
|
101 |
|
102 |
print("\nInformations about devices detected under OpenCL:")
|
103 |
# For PyOpenCL import
|
104 |
try:
|
105 |
import pyopencl as cl |
106 |
Id=0
|
107 |
for platform in cl.get_platforms(): |
108 |
for device in platform.get_devices(): |
109 |
#deviceType=cl.device_type.to_string(device.type)
|
110 |
deviceType="xPU"
|
111 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
112 |
Id=Id+1
|
113 |
|
114 |
print
|
115 |
except ImportError: |
116 |
print("Your platform does not seem to support OpenCL")
|
117 |
|
118 |
print("\nInformations about devices detected under CUDA API:")
|
119 |
# For PyCUDA import
|
120 |
try:
|
121 |
import pycuda.driver as cuda |
122 |
cuda.init() |
123 |
for Id in range(cuda.Device.count()): |
124 |
device=cuda.Device(Id) |
125 |
print("Device #%i of type GPU : %s" % (Id,device.name()))
|
126 |
print
|
127 |
except:
|
128 |
print("Your platform does not seem to support CUDA")
|
129 |
|
130 |
sys.exit() |
131 |
|
132 |
elif opt == '-c': |
133 |
Curves=True
|
134 |
elif opt == '-k': |
135 |
IfThen=True
|
136 |
elif opt in ("-d", "--device"): |
137 |
Devices.append(int(arg))
|
138 |
elif opt in ("-g", "--gpustyle"): |
139 |
GpuStyle = arg |
140 |
elif opt in ("-m", "--marsaglia"): |
141 |
RNG = arg |
142 |
elif opt in ("-v", "--valuetype"): |
143 |
ValueType = arg |
144 |
elif opt in ("-i", "--iterations"): |
145 |
Iterations = numpy.uint64(arg) |
146 |
elif opt in ("-b", "--blocksbegin"): |
147 |
BlocksBegin = int(arg)
|
148 |
BlocksEnd = BlocksBegin |
149 |
elif opt in ("-e", "--blocksend"): |
150 |
BlocksEnd = int(arg)
|
151 |
elif opt in ("-s", "--blocksstep"): |
152 |
BlocksStep = int(arg)
|
153 |
elif opt in ("-f", "--threadsfirst"): |
154 |
ThreadsBegin = int(arg)
|
155 |
ThreadsEnd = ThreadsBegin |
156 |
elif opt in ("-l", "--threadslast"): |
157 |
ThreadsEnd = int(arg)
|
158 |
elif opt in ("-t", "--threadsstep"): |
159 |
ThreadsStep = int(arg)
|
160 |
elif opt in ("-r", "--redo"): |
161 |
Redo = int(arg)
|
162 |
|
163 |
print("Devices Identification : %s" % Devices)
|
164 |
print("GpuStyle used : %s" % GpuStyle)
|
165 |
print("Iterations : %s" % Iterations)
|
166 |
print("Number of Blocks on begin : %s" % BlocksBegin)
|
167 |
print("Number of Blocks on end : %s" % BlocksEnd)
|
168 |
print("Step on Blocks : %s" % BlocksStep)
|
169 |
print("Number of Threads on begin : %s" % ThreadsBegin)
|
170 |
print("Number of Threads on end : %s" % ThreadsEnd)
|
171 |
print("Step on Threads : %s" % ThreadsStep)
|
172 |
print("Number of redo : %s" % Redo)
|
173 |
print("Metrology done out of XPU : %r" % OutMetrology)
|
174 |
print("Type of Marsaglia RNG used : %s" % RNG)
|
175 |
print("Type of variable : %s" % ValueType)
|
176 |
|
177 |
if GpuStyle=='CUDA': |
178 |
try:
|
179 |
# For PyCUDA import
|
180 |
import pycuda.driver as cuda |
181 |
|
182 |
cuda.init() |
183 |
for Id in range(cuda.Device.count()): |
184 |
device=cuda.Device(Id) |
185 |
print("Device #%i of type GPU : %s" % (Id,device.name()))
|
186 |
if Id in Devices: |
187 |
Alu[Id]='GPU'
|
188 |
except ImportError: |
189 |
print("Platform does not seem to support CUDA")
|
190 |
|
191 |
if GpuStyle=='OpenCL': |
192 |
try:
|
193 |
# For PyOpenCL import
|
194 |
import pyopencl as cl |
195 |
Id=0
|
196 |
for platform in cl.get_platforms(): |
197 |
for device in platform.get_devices(): |
198 |
#deviceType=cl.device_type.to_string(device.type)
|
199 |
deviceType="xPU"
|
200 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
|
201 |
|
202 |
if Id in Devices: |
203 |
# Set the Alu as detected Device Type
|
204 |
Alu[Id]=deviceType |
205 |
Id=Id+1
|
206 |
except ImportError: |
207 |
print("Platform does not seem to support OpenCL")
|
208 |
|
209 |
print(Devices,Alu) |
210 |
|
211 |
BlocksList=range(BlocksBegin,BlocksEnd+BlocksStep,BlocksStep)
|
212 |
ThreadsList=range(ThreadsBegin,ThreadsEnd+ThreadsStep,ThreadsStep)
|
213 |
|
214 |
ExploredJobs=numpy.array([]).astype(numpy.uint32) |
215 |
ExploredBlocks=numpy.array([]).astype(numpy.uint32) |
216 |
ExploredThreads=numpy.array([]).astype(numpy.uint32) |
217 |
avgD=numpy.array([]).astype(numpy.float32) |
218 |
medD=numpy.array([]).astype(numpy.float32) |
219 |
stdD=numpy.array([]).astype(numpy.float32) |
220 |
minD=numpy.array([]).astype(numpy.float32) |
221 |
maxD=numpy.array([]).astype(numpy.float32) |
222 |
avgR=numpy.array([]).astype(numpy.float32) |
223 |
medR=numpy.array([]).astype(numpy.float32) |
224 |
stdR=numpy.array([]).astype(numpy.float32) |
225 |
minR=numpy.array([]).astype(numpy.float32) |
226 |
maxR=numpy.array([]).astype(numpy.float32) |
227 |
|
228 |
for Blocks,Threads in itertools.product(BlocksList,ThreadsList): |
229 |
|
230 |
ExploredJobs=numpy.append(ExploredJobs,Blocks*Threads) |
231 |
ExploredBlocks=numpy.append(ExploredBlocks,Blocks) |
232 |
ExploredThreads=numpy.append(ExploredThreads,Threads) |
233 |
|
234 |
IterationsMP=Iterations/len(Devices)
|
235 |
if Iterations%len(Devices)!=0: |
236 |
IterationsMP+=1
|
237 |
|
238 |
DurationItem=numpy.array([]).astype(numpy.float32) |
239 |
Duration=numpy.array([]).astype(numpy.float32) |
240 |
Rate=numpy.array([]).astype(numpy.float32) |
241 |
for i in range(Redo): |
242 |
MyThreads=[] |
243 |
time_start=time.time() |
244 |
|
245 |
for Device in Devices: |
246 |
DeltaD=Device-min(Devices)+1 |
247 |
DeltaS=(DeltaD-1)*524287 |
248 |
InputCL={} |
249 |
InputCL['Iterations']=IterationsMP
|
250 |
InputCL['Steps']=1 |
251 |
InputCL['Blocks']=Blocks
|
252 |
InputCL['Threads']=Threads
|
253 |
InputCL['Device']=Device
|
254 |
InputCL['RNG']=RNG
|
255 |
InputCL['Seeds']=numpy.uint32(Seeds[0]*DeltaD+DeltaS),numpy.uint32(Seeds[1]*DeltaD+DeltaS) |
256 |
InputCL['ValueType']=ValueType
|
257 |
InputCL['IfThen']=IfThen
|
258 |
if GpuStyle=='CUDA': |
259 |
try:
|
260 |
MyThread=threadWithReturn(target=MetropolisCuda, args=(InputCL,)) |
261 |
except:
|
262 |
print("Problem with (%i,%i) // computations on Cuda" % (Blocks,Threads))
|
263 |
elif GpuStyle=='OpenCL': |
264 |
try:
|
265 |
MyThread=threadWithReturn(target=MetropolisOpenCL, args=(InputCL,)) |
266 |
except:
|
267 |
print("Problem with (%i,%i) // computations on OpenCL" % (Blocks,Threads) )
|
268 |
|
269 |
print("Start on #%i device..." % Device)
|
270 |
MyThread.start() |
271 |
MyThreads.append(MyThread) |
272 |
|
273 |
NewIterations=0
|
274 |
Inside=0
|
275 |
for MyThread in MyThreads: |
276 |
OutputCL=MyThread.join() |
277 |
NewIterations+=OutputCL['NewIterations']
|
278 |
Inside+=OutputCL['Inside']
|
279 |
|
280 |
Duration=numpy.append(Duration,time.time()-time_start) |
281 |
Rate=numpy.append(Rate,NewIterations/Duration[-1])
|
282 |
print("Itops %i\nLogItops %.2f " % (int(Rate[-1]),numpy.log(Rate[-1])/numpy.log(10))) |
283 |
print("Pi estimation %.8f" % (4./NewIterations*Inside)) |
284 |
|
285 |
avgD=numpy.append(avgD,numpy.average(Duration)) |
286 |
medD=numpy.append(medD,numpy.median(Duration)) |
287 |
stdD=numpy.append(stdD,numpy.std(Duration)) |
288 |
minD=numpy.append(minD,numpy.min(Duration)) |
289 |
maxD=numpy.append(maxD,numpy.max(Duration)) |
290 |
avgR=numpy.append(avgR,numpy.average(Rate)) |
291 |
medR=numpy.append(medR,numpy.median(Rate)) |
292 |
stdR=numpy.append(stdR,numpy.std(Rate)) |
293 |
minR=numpy.append(minR,numpy.min(Rate)) |
294 |
maxR=numpy.append(maxR,numpy.max(Rate)) |
295 |
|
296 |
print("%.2f %.2f %.2f %.2f %.2f %i %i %i %i %i" % (avgD[-1],medD[-1],stdD[-1],minD[-1],maxD[-1],avgR[-1],medR[-1],stdR[-1],minR[-1],maxR[-1])) |
297 |
|
298 |
numpy.savez("PiThreads_%s_%s_%s_%s_%s_%s_%s_%s_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu[Devices[0]],GpuStyle,BlocksBegin,BlocksEnd,ThreadsBegin,ThreadsEnd,Iterations,Devices[0],Metrology,gethostname()),(ExploredBlocks,ExploredThreads,avgD,medD,stdD,minD,maxD,avgR,medR,stdR,minR,maxR)) |
299 |
ToSave=[ ExploredBlocks,ExploredThreads,avgD,medD,stdD,minD,maxD,avgR,medR,stdR,minR,maxR ] |
300 |
numpy.savetxt("PiThreads_%s_%s_%s_%s_%s_%s_%s_%i_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu[Devices[0]],GpuStyle,BlocksBegin,BlocksEnd,ThreadsBegin,ThreadsEnd,Iterations,Devices[0],Metrology,gethostname()),numpy.transpose(ToSave),fmt='%i %i %e %e %e %e %e %i %i %i %i %i') |
301 |
|
302 |
if Fit:
|
303 |
FitAndPrint(ExploredJobs,median,Curves) |