root / ETSN / MyDFT_9.py
Historique | Voir | Annoter | Télécharger (12,52 ko)
1 |
#!/usr/bin/env python3
|
---|---|
2 |
|
3 |
import numpy as np |
4 |
import pyopencl as cl |
5 |
from numpy import pi,cos,sin |
6 |
|
7 |
# Naive Discrete Fourier Transform
|
8 |
def MyDFT(x,y): |
9 |
size=x.shape[0]
|
10 |
X=np.zeros(size).astype(np.float32) |
11 |
Y=np.zeros(size).astype(np.float32) |
12 |
for i in range(size): |
13 |
for j in range(size): |
14 |
X[i]=X[i]+x[j]*cos(2.*pi*i*j/size)+y[j]*sin(2.*pi*i*j/size) |
15 |
Y[i]=Y[i]-x[j]*sin(2.*pi*i*j/size)+y[j]*cos(2.*pi*i*j/size) |
16 |
return(X,Y)
|
17 |
|
18 |
# Numpy Discrete Fourier Transform
|
19 |
def NumpyDFT(x,y): |
20 |
size=x.shape[0]
|
21 |
X=np.zeros(size).astype(np.float32) |
22 |
Y=np.zeros(size).astype(np.float32) |
23 |
nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
24 |
for i in range(size): |
25 |
X[i]=np.sum(np.add(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
26 |
Y[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),y),np.multiply(np.sin(i*nj),x))) |
27 |
return(X,Y)
|
28 |
|
29 |
# Numba Discrete Fourier Transform
|
30 |
import numba |
31 |
@numba.njit(parallel=True) |
32 |
def NumbaDFT(x,y): |
33 |
size=x.shape[0]
|
34 |
X=np.zeros(size).astype(np.float32) |
35 |
Y=np.zeros(size).astype(np.float32) |
36 |
nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
37 |
for i in numba.prange(size): |
38 |
X[i]=np.sum(np.add(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
39 |
Y[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),y),np.multiply(np.sin(i*nj),x))) |
40 |
return(X,Y)
|
41 |
|
42 |
# OpenCL complete operation
|
43 |
def OpenCLDFT(a_np,b_np,Device): |
44 |
|
45 |
Id=0
|
46 |
HasXPU=False
|
47 |
for platform in cl.get_platforms(): |
48 |
for device in platform.get_devices(): |
49 |
if Id==Device:
|
50 |
XPU=device |
51 |
print("CPU/GPU selected: ",device.name.lstrip())
|
52 |
HasXPU=True
|
53 |
Id+=1
|
54 |
# print(Id)
|
55 |
|
56 |
if HasXPU==False: |
57 |
print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
58 |
sys.exit() |
59 |
|
60 |
try:
|
61 |
ctx = cl.Context(devices=[XPU]) |
62 |
queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
63 |
except:
|
64 |
print("Crash during context creation")
|
65 |
|
66 |
TimeIn=time.time() |
67 |
# Copy from Host to Device using pointers
|
68 |
mf = cl.mem_flags |
69 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
70 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
71 |
Elapsed=time.time()-TimeIn |
72 |
print("Copy from Host 2 Device : %.3f" % Elapsed)
|
73 |
|
74 |
TimeIn=time.time() |
75 |
# Definition of kernel under OpenCL
|
76 |
prg = cl.Program(ctx, """
|
77 |
|
78 |
#define PI 3.141592653589793
|
79 |
|
80 |
__kernel void MyDFT(
|
81 |
__global const float *a_g, __global const float *b_g, __global float *A_g, __global float *B_g)
|
82 |
{
|
83 |
int gid = get_global_id(0);
|
84 |
uint size = get_global_size(0);
|
85 |
float A=0.,B=0.;
|
86 |
for (uint i=0; i<size;i++)
|
87 |
{
|
88 |
A+=a_g[i]*cos(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*sin(2.*PI*(float)(gid*i)/(float)size);
|
89 |
B+=-a_g[i]*sin(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*cos(2.*PI*(float)(gid*i)/(float)size);
|
90 |
}
|
91 |
A_g[gid]=A;
|
92 |
B_g[gid]=B;
|
93 |
}
|
94 |
""").build()
|
95 |
Elapsed=time.time()-TimeIn |
96 |
print("Building kernels : %.3f" % Elapsed)
|
97 |
|
98 |
TimeIn=time.time() |
99 |
# Memory allocation on Device for result
|
100 |
A_ocl = np.empty_like(a_np) |
101 |
B_ocl = np.empty_like(a_np) |
102 |
Elapsed=time.time()-TimeIn |
103 |
print("Allocation on Host for results : %.3f" % Elapsed)
|
104 |
|
105 |
A_g = cl.Buffer(ctx, mf.WRITE_ONLY, A_ocl.nbytes) |
106 |
B_g = cl.Buffer(ctx, mf.WRITE_ONLY, B_ocl.nbytes) |
107 |
Elapsed=time.time()-TimeIn |
108 |
print("Allocation on Device for results : %.3f" % Elapsed)
|
109 |
|
110 |
TimeIn=time.time() |
111 |
# Synthesis of function "sillysum" inside Kernel Sources
|
112 |
knl = prg.MyDFT # Use this Kernel object for repeated calls
|
113 |
Elapsed=time.time()-TimeIn |
114 |
print("Synthesis of kernel : %.3f" % Elapsed)
|
115 |
|
116 |
TimeIn=time.time() |
117 |
# Call of kernel previously defined
|
118 |
CallCL=knl(queue, a_np.shape, None, a_g, b_g, A_g, B_g)
|
119 |
#
|
120 |
CallCL.wait() |
121 |
Elapsed=time.time()-TimeIn |
122 |
print("Execution of kernel : %.3f" % Elapsed)
|
123 |
|
124 |
TimeIn=time.time() |
125 |
# Copy from Device to Host
|
126 |
cl.enqueue_copy(queue, A_ocl, A_g) |
127 |
cl.enqueue_copy(queue, B_ocl, B_g) |
128 |
Elapsed=time.time()-TimeIn |
129 |
print("Copy from Device 2 Host : %.3f" % Elapsed)
|
130 |
|
131 |
# Liberation of memory
|
132 |
a_g.release() |
133 |
b_g.release() |
134 |
A_g.release() |
135 |
B_g.release() |
136 |
|
137 |
return(A_ocl,B_ocl)
|
138 |
|
139 |
# CUDA complete operation
|
140 |
def CUDADFT(a_np,b_np,Device,Threads): |
141 |
# import pycuda.autoinit
|
142 |
import pycuda.driver as drv |
143 |
from pycuda.compiler import SourceModule |
144 |
|
145 |
try:
|
146 |
# For PyCUDA import
|
147 |
import pycuda.driver as cuda |
148 |
from pycuda.compiler import SourceModule |
149 |
|
150 |
cuda.init() |
151 |
for Id in range(cuda.Device.count()): |
152 |
if Id==Device:
|
153 |
XPU=cuda.Device(Id) |
154 |
print("GPU selected %s" % XPU.name())
|
155 |
print
|
156 |
|
157 |
except ImportError: |
158 |
print("Platform does not seem to support CUDA")
|
159 |
|
160 |
Context=XPU.make_context() |
161 |
|
162 |
TimeIn=time.time() |
163 |
mod = SourceModule("""
|
164 |
|
165 |
#define PI 3.141592653589793
|
166 |
|
167 |
__global__ void MyDFT(float *A_g, float *B_g, const float *a_g,const float *b_g)
|
168 |
{
|
169 |
const int gid = blockIdx.x*blockDim.x+threadIdx.x;
|
170 |
uint size = gridDim.x*blockDim.x;
|
171 |
float A=0.,B=0.;
|
172 |
for (uint i=0; i<size;i++)
|
173 |
{
|
174 |
A+=a_g[i]*cos(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*sin(2.*PI*(float)(gid*i)/(float)size);
|
175 |
B+=-a_g[i]*sin(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*cos(2.*PI*(float)(gid*i)/(float)size);
|
176 |
}
|
177 |
A_g[gid]=A;
|
178 |
B_g[gid]=B;
|
179 |
}
|
180 |
|
181 |
""")
|
182 |
Elapsed=time.time()-TimeIn |
183 |
print("Definition of kernel : %.3f" % Elapsed)
|
184 |
|
185 |
TimeIn=time.time() |
186 |
MyDFT = mod.get_function("MyDFT")
|
187 |
Elapsed=time.time()-TimeIn |
188 |
print("Synthesis of kernel : %.3f" % Elapsed)
|
189 |
|
190 |
TimeIn=time.time() |
191 |
A_np = np.zeros_like(a_np) |
192 |
B_np = np.zeros_like(a_np) |
193 |
Elapsed=time.time()-TimeIn |
194 |
print("Allocation on Host for results : %.3f" % Elapsed)
|
195 |
|
196 |
Size=a_np.size |
197 |
if (Size % Threads != 0): |
198 |
print("Impossible : %i not multiple of %i..." % (Threads,Size) )
|
199 |
TimeIn=time.time() |
200 |
MyDFT(drv.Out(A_np), drv.Out(B_np), drv.In(a_np), drv.In(b_np), |
201 |
block=(1,1,1), grid=(a_np.size,1)) |
202 |
Elapsed=time.time()-TimeIn |
203 |
print("Execution of kernel : %.3f" % Elapsed)
|
204 |
else:
|
205 |
Blocks=int(Size/Threads)
|
206 |
TimeIn=time.time() |
207 |
MyDFT(drv.Out(A_np), drv.Out(B_np), drv.In(a_np), drv.In(b_np), |
208 |
block=(Threads,1,1), grid=(Blocks,1)) |
209 |
Elapsed=time.time()-TimeIn |
210 |
print("Execution of kernel : %.3f" % Elapsed)
|
211 |
|
212 |
Context.pop() |
213 |
Context.detach() |
214 |
|
215 |
return(A_np,B_np)
|
216 |
|
217 |
import sys |
218 |
import time |
219 |
|
220 |
if __name__=='__main__': |
221 |
|
222 |
SIZE=1024
|
223 |
Device=0
|
224 |
NaiveMethod=False
|
225 |
NumpyMethod=False
|
226 |
NumbaMethod=False
|
227 |
OpenCLMethod=True
|
228 |
CUDAMethod=False
|
229 |
Threads=1
|
230 |
|
231 |
import getopt |
232 |
|
233 |
HowToUse='%s -n [Naive] -y [numpY] -a [numbA] -o [OpenCL] -c [CUDA] -s <SizeOfVector> -d <DeviceId> -t <threads>'
|
234 |
|
235 |
try:
|
236 |
opts, args = getopt.getopt(sys.argv[1:],"nyaochs:d:t:",["size=","device="]) |
237 |
except getopt.GetoptError:
|
238 |
print(HowToUse % sys.argv[0])
|
239 |
sys.exit(2)
|
240 |
|
241 |
# List of Devices
|
242 |
Devices=[] |
243 |
Alu={} |
244 |
|
245 |
for opt, arg in opts: |
246 |
if opt == '-h': |
247 |
print(HowToUse % sys.argv[0])
|
248 |
|
249 |
print("\nInformations about devices detected under OpenCL API:")
|
250 |
# For PyOpenCL import
|
251 |
try:
|
252 |
import pyopencl as cl |
253 |
Id=0
|
254 |
for platform in cl.get_platforms(): |
255 |
for device in platform.get_devices(): |
256 |
#deviceType=cl.device_type.to_string(device.type)
|
257 |
deviceType="xPU"
|
258 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
259 |
Id=Id+1
|
260 |
|
261 |
except:
|
262 |
print("Your platform does not seem to support OpenCL")
|
263 |
|
264 |
print("\nInformations about devices detected under CUDA API:")
|
265 |
# For PyCUDA import
|
266 |
try:
|
267 |
import pycuda.driver as cuda |
268 |
cuda.init() |
269 |
for Id in range(cuda.Device.count()): |
270 |
device=cuda.Device(Id) |
271 |
print("Device #%i of type GPU : %s" % (Id,device.name()))
|
272 |
print
|
273 |
except:
|
274 |
print("Your platform does not seem to support CUDA")
|
275 |
|
276 |
sys.exit() |
277 |
|
278 |
elif opt in ("-d", "--device"): |
279 |
Device=int(arg)
|
280 |
elif opt in ("-s", "--size"): |
281 |
SIZE = int(arg)
|
282 |
elif opt in ("-t", "--threads"): |
283 |
Threads = int(arg)
|
284 |
elif opt in ("-n"): |
285 |
NaiveMethod=True
|
286 |
elif opt in ("-y"): |
287 |
NumpyMethod=True
|
288 |
elif opt in ("-a"): |
289 |
NumbaMethod=True
|
290 |
elif opt in ("-o"): |
291 |
OpenCLMethod=True
|
292 |
elif opt in ("-c"): |
293 |
CUDAMethod=True
|
294 |
|
295 |
print("Device Selection : %i" % Device)
|
296 |
print("Size of complex vector : %i" % SIZE)
|
297 |
print("DFT Naive computation %s " % NaiveMethod )
|
298 |
print("DFT Numpy computation %s " % NumpyMethod )
|
299 |
print("DFT Numba computation %s " % NumbaMethod )
|
300 |
print("DFT OpenCL computation %s " % OpenCLMethod )
|
301 |
print("DFT CUDA computation %s " % CUDAMethod )
|
302 |
|
303 |
if CUDAMethod:
|
304 |
try:
|
305 |
# For PyCUDA import
|
306 |
import pycuda.driver as cuda |
307 |
|
308 |
cuda.init() |
309 |
for Id in range(cuda.Device.count()): |
310 |
device=cuda.Device(Id) |
311 |
print("Device #%i of type GPU : %s" % (Id,device.name()))
|
312 |
if Id in Devices: |
313 |
Alu[Id]='GPU'
|
314 |
|
315 |
except ImportError: |
316 |
print("Platform does not seem to support CUDA")
|
317 |
|
318 |
if OpenCLMethod:
|
319 |
try:
|
320 |
# For PyOpenCL import
|
321 |
import pyopencl as cl |
322 |
Id=0
|
323 |
for platform in cl.get_platforms(): |
324 |
for device in platform.get_devices(): |
325 |
#deviceType=cl.device_type.to_string(device.type)
|
326 |
deviceType="xPU"
|
327 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
|
328 |
|
329 |
if Id in Devices: |
330 |
# Set the Alu as detected Device Type
|
331 |
Alu[Id]=deviceType |
332 |
Id=Id+1
|
333 |
except ImportError: |
334 |
print("Platform does not seem to support OpenCL")
|
335 |
|
336 |
|
337 |
|
338 |
a_np = np.ones(SIZE).astype(np.float32) |
339 |
b_np = np.ones(SIZE).astype(np.float32) |
340 |
|
341 |
C_np = np.zeros(SIZE).astype(np.float32) |
342 |
D_np = np.zeros(SIZE).astype(np.float32) |
343 |
C_np[0] = np.float32(SIZE)
|
344 |
D_np[0] = np.float32(SIZE)
|
345 |
|
346 |
# Native & Naive Implementation
|
347 |
if NaiveMethod:
|
348 |
print("Performing naive implementation")
|
349 |
TimeIn=time.time() |
350 |
c_np,d_np=MyDFT(a_np,b_np) |
351 |
NativeElapsed=time.time()-TimeIn |
352 |
NativeRate=int(SIZE/NativeElapsed)
|
353 |
print("NativeRate: %i" % NativeRate)
|
354 |
print("Precision: ",np.linalg.norm(c_np-C_np),
|
355 |
np.linalg.norm(d_np-D_np)) |
356 |
|
357 |
# Native & Numpy Implementation
|
358 |
if NumpyMethod:
|
359 |
print("Performing Numpy implementation")
|
360 |
TimeIn=time.time() |
361 |
e_np,f_np=NumpyDFT(a_np,b_np) |
362 |
NumpyElapsed=time.time()-TimeIn |
363 |
NumpyRate=int(SIZE/NumpyElapsed)
|
364 |
print("NumpyRate: %i" % NumpyRate)
|
365 |
print("Precision: ",np.linalg.norm(e_np-C_np),
|
366 |
np.linalg.norm(f_np-D_np)) |
367 |
|
368 |
# Native & Numba Implementation
|
369 |
if NumbaMethod:
|
370 |
print("Performing Numba implementation")
|
371 |
TimeIn=time.time() |
372 |
g_np,h_np=NumbaDFT(a_np,b_np) |
373 |
NumbaElapsed=time.time()-TimeIn |
374 |
NumbaRate=int(SIZE/NumbaElapsed)
|
375 |
print("NumbaRate: %i" % NumbaRate)
|
376 |
print("Precision: ",np.linalg.norm(g_np-C_np),
|
377 |
np.linalg.norm(h_np-D_np)) |
378 |
|
379 |
# OpenCL Implementation
|
380 |
if OpenCLMethod:
|
381 |
print("Performing OpenCL implementation")
|
382 |
TimeIn=time.time() |
383 |
i_np,j_np=OpenCLDFT(a_np,b_np,Device) |
384 |
OpenCLElapsed=time.time()-TimeIn |
385 |
OpenCLRate=int(SIZE/OpenCLElapsed)
|
386 |
print("OpenCLRate: %i" % OpenCLRate)
|
387 |
print("Precision: ",np.linalg.norm(i_np-C_np),
|
388 |
np.linalg.norm(j_np-D_np)) |
389 |
|
390 |
# CUDA Implementation
|
391 |
if CUDAMethod:
|
392 |
print("Performing CUDA implementation")
|
393 |
TimeIn=time.time() |
394 |
k_np,l_np=CUDADFT(a_np,b_np,Device,Threads) |
395 |
CUDAElapsed=time.time()-TimeIn |
396 |
CUDARate=int(SIZE/CUDAElapsed)
|
397 |
print("CUDARate: %i" % CUDARate)
|
398 |
print("Precision: ",np.linalg.norm(k_np-C_np),
|
399 |
np.linalg.norm(l_np-D_np)) |
400 |
|